Research Studentships

Research studentships header

Funding Your Research

At the University of Lincoln, postgraduate students are an integral part of our research community. They work alongside talented academics and researchers from around the world, contributing to our growing reputation for internationally excellent research.

There are opportunites to get involved in exciting research projects by applying for a studentship. The University offers a range of studentships including funded and part-funded opportunities, please refer to the current studentships information below.  

CDT 2 Col

EPSRC Centre for Doctoral Training in Agri-Food Robotics: AgriFoRwArdS

The University of Lincoln has launched the world's first Centre for Doctoral Training in Agri-Food Robotics in collaboration with the University of Cambridge and the University of East Anglia. This new advanced training centre in agri-food robotics is creating the largest ever cohort of Robotics and Autonomous Systems (RAS) specialists for the global food and farming sectors, thanks to a multi-million pound funding award the Engineering and Physical Sciences Research Council (EPSRC).

Applications for entry into the CDT programme starting in October 2021 are now closed. Applications for October 2022 entry will open in October 2021.

Find out More

Current Studentship Opportunities

Use the dropdown menus below to browse current funded and part-funded studentship opportunities at the University of Lincoln, listed by academic College. 

Studentship Terms and Conditions

College of Science

EPSRC logo

EPSRC Doctoral Training Partnership (DTP) Studentships

The University of Lincoln has received funding from the Engineering and Physical Sciences Research Council (EPSRC) to establish a Doctoral Training Partnership (DTP), which will provide skills and training to foster the next generation of world-class research leaders in areas of strategic importance to both EPSRC and the University of Lincoln.

Our training programme prioritises the following three thematic areas of robotics and artificial intelligence: smart energy, medical diagnosis and healthcare support systems, and bio-physics inspired robotics, in which the University has strong research groups. These research groups will provide DTP students with a rich research environment and a broad range of experienced and new researchers.

Each studentship will be associated with a specific project that will be designed to advance fundamental research in computer science or engineering within one of the thematic areas. Interdisciplinary links with other subject areas will also be expected.

Studentship applications are now open for entry into the DTP programme, starting in October 2021.

Please make sure to check the eligibility criteria before you apply. Normally, a student must have no restrictions on how long they can stay in the UK and have been ordinarily resident in the UK for at least 3 years prior to the start of the studentship. UK students will be eligible for a full studentship, covering the costs of Home fees, a stipend to support living costs for 3.5 years, and a generous research training support grant enabling international travel and participation in the leading conferences and symposia.

Although most DTP students must be UK residents, we also have an opportunity for an international (EU and non-EU) student. The international studentship award will be subject to eligibility, and also the availability of complementary funding (to provide the differential to the international fee rate). You should get in touch with the lead supervisor before applying this award.

Closing date: Sunday 13 June 2021


DTP PhD Application Form 2021-22

Smart Energy

Nanostructural design of MnO2 cathodes for rechargeable aqueous Zn-ion batteries

Academic contact: Dr Guanjie He (, Senior Lecturer, School of Chemistry

This project aims at enhancing the collaboration between MSS Ltd and University of Lincoln, and to work on the mass production of cathode materials for Zn-ion batteries

The UK government has announced a Ten Point Plan for a Green Industrial Revolution in 2020, emphasising the national importance for clean energy research. Offshore wind aims to produce 40 GW electricity by 2030, therefore, the energy storage technologies are essential to accelerating the shift to zero emission vehicles. Zn-ion batteries in aqueous electrolyte are one of the promising candidates for next-generation clean energy suppliers due to their cost-effective and safe properties, but the performance of cathode materials limited their large-scale application.

This project aims to develop low-cost and high-performance MnO2 cathode materials through nano-structural engineering. The mechanism will be studied via the advanced materials characterisation techniques, the battery evaluation in coin cells will be carried out. The mass production of the materials and grid scale battery application will be investigated. This studentship aims at building up long-term collaboration among our industrial partners (MSS Ltd., One electrical Ltd.) and the University of Lincoln. The regular travel (3 to 6 months) between Manchester and Lincoln is expected to enhance the links between the University and the companies.

Students can learn:

  • Materials synthesis, mass production and characterisation methods
  • Electrochemical analysis
  • Fabrication of batteries
  • Market analysis
  • Collaborative skills among academic fields and industries.

The ideal candidate should have, at a minimum, a 2.1 degree in chemistry, materials science, chemical engineering, or a related discipline. They must demonstrate skills and experience (or an aptitude for mastering) of the synthetic chemistry, electrochemistry - especially batteries. They should be academically curious and think deeply and creatively. They should communicate well in both written and spoken English. They should enjoy working with others from diverse backgrounds and take responsibility for the progress and quality of projects

Supervisory Team:

Dr Guanjie He, University of Lincoln

Prof Waqar Ahmed, University of Lincoln


PhD GTA Funded Studentship

Experimental and computational studies of the methanol synthesis catalyst – where is the hydrogen?

The PhD is jointly funded by the University of Lincoln and the ISIS Neutron and Muon Facility in Oxfordshire.

The synthesis of methanol from CO, CO2 and H2 is an enormous business - 75 million tonnes in 2015. The process uses a Cu/ZnO/Al2O3 (65:25:10) catalyst that was originally developed by ICI in the 1960s and operates in the range 200–300 °C and 10–100 bar. In view of its industrial importance, the catalyst has been extensively studied. There is general agreement that at low temperature the reaction proceeds by hydrogenation of CO2 to formate and then stepwise addition of hydrogen to methanol. At high temperature, CO hydrogenation also becomes important. While the roles of CO2 and CO have been extensively investigated and are well-characterised, the hydrogen component has been much less studied. It is generally believed that hydrogen dissociates on the copper, but adsorbed hydrogen has not been detected. H2 dissociates on ZnO to give hydroxyls and Zn-H species, but only the former have been observed on working catalysts. The aim of this project is a combined experimental and computational study to characterise the hydrogen present on a commercial, working methanol synthesis catalyst.

This project will have a computational aspect to be carried out at the University of Lincoln and an experimental aspect to be carried out at the ISIS Neutron and Muon Facility (Harwell Campus, Oxfordshire). The computational aspect will be to use density functional theory-based quantum chemical simulations to investigate the state of hydrogen on the catalyst. Initial work to provide training in the methodology will be to study the adsorption of hydrogen on the low index faces of copper and on ZnO and the Zn-doped Cu surfaces. Subsequent work will investigate extended systems that include at least two of the three catalyst components on which the detailed reaction mechanism of the methanol conversion from CO2 will be investigated. A range of computational methods will used including lattice dynamics, ab initio molecular dynamics and time-dependent density functional theory.

The experimental work will use a commercial Cu/ZnO/Al2O3 catalyst. Neutron scattering methods will be employed to investigate how the adsorbates and the catalyst change with different reaction conditions and time on stream. The emphasis will be to find and study adsorbed hydrogen, so where appropriate, hydrogen on model systems such as Raney Cu or pure ZnO will also be studied. As part of this work, we will improve our ability to produce samples at a particular point along a reaction coordinate by the implementation of UV-vis spectroscopy on an existing preparation rig designed to produce the large (10-50 g) samples required for neutron scattering studies of catalysts. At a later stage in the project, we will also implement Raman spectroscopy on the same rig. We will also modify an existing system for simultaneous Raman/neutron scattering measurements to enable gas handling experiments. The upgrades to the catalyst preparation rig will be of value to other groups that also use ISIS and some collaboration with these will form part of the project.

Informal enquiries are welcomed and should be directed to either Dr Arunabhiram Chutia ( or Prof Stewart Parker (

Entry Requirements

Applicants should hold, or expect to receive, an MSc in chemistry or an honours degree in chemistry (first or upper second class honours degree), or the equivalent.

The project will require an extended stay (12-18 months) at the Harwell campus in Oxfordshire.

How to Apply

Formal applications should be made via the University of Lincoln’s online application form.

Closing Date: Saturday 31 July 2021 or until filled.

Interviews: TBC

Start Date: Monday 4 October 2021


This studentship is for a start date in the Academic Year of 2021/22 and covers the full PhD fees for a maximum of 3.5 years full-time study. The candidate will have a stipend/living allowance of £15,609 per annum. Tuition fees are included (for UK fee level).

Suitably qualified candidates worldwide may apply, although International students must self-fund the difference between the International and UK fee rate.

The PhD is jointly funded by the University of Lincoln and the ISIS Neutron and Muon Facility. It includes UK fees and a stipend. Travel and subsistence for meetings and conferences up to £2k per annum is also available.

Duration: 42 months

Reference: 2CA-21-1

College of Social Science

One Fee-waiver PhD Studentship

The School of Psychology is offering one fee-waiver PhD studentship for three years. The studentship covers the fees for British citizens and residents. Non-UK-based applicants are eligible to apply, but will need to cover the difference in fees between the Home and International rate.

The School of Psychology has a large postgraduate community and over 50 academics. Our research is organised in three research groups: Development and Social Behaviour, Forensic and Clinical, Perception Action and Cognition. Additional details about our research are available on our research pages at

The deadline for applications is 15 October 2021; interviews of shortlisted applicants will take place at the end of October. The preferred start date is January 2022 or soon thereafter. This is a full-time studentship however applications for part-time positions will be considered. Full time students will be expected to do a minimum of 144 hrs of teaching activity per year.

This studentship is available for six projects. Information about the projects can be found below.

To apply you need to email a one page CV and a covering letter including a brief insight into the research topic area to

Applicants must specify in their cover letter which project they are applying for. The CV and relevant experience of the applicants (but not their chosen project) are the key selection criteria for this position.


a) Socially assistive robots as a training tool to enhance multisensory perception in children diagnosed with autism spectrum disorder.

Social assisting robots have been described as effective therapeutic tools to enhance social skills in children diagnosed with autism spectrum disorder (ASD).

In this innovative project we will investigate whether training with a robot can boost multisensory perception in ASD children.

Your key roles would include:

  • preparing experiments
  • collecting and analysing data;
  • writing scientific papers, presenting results in conferences;
  • applying EEG, robots

The multidisciplinary nature of a cross-discipline collaboration between the Schools of Psychology, the Autism Research Innovation Centre and Computer Science will make you think about problems from a whole new perspective and explore innovative ideas. For enquiries about this project please contact Dr Julia Foecker (

b) Developing an educational tool to address unintentional cognitive biases during decision-making in court

Cognitive biases can influence reasoning when people make decisions under uncertainty and are therefore directly relevant to the criminal justice system where unbiased reasoning and fair judgement are of paramount importance. Research has shown that cognitive biases are pervasive and can impact decisions made about witnesses, victims, and defendants. There have been calls for a need to better understand how biases affect decisions made and what can be done to mitigate their effects. However, to date it is unclear as to when courtroom participants should be taught about cognitive biases and how they should be educated.

For enquiries about this project please contact Dr Georgina Gous (

c) Decoding dog emotions in human brain

Reading your dog’s emotion appropriately is crucial to safeguard human-dog interaction and dog welfare. Misinterpretation can lead to suffering in dogs, reduced human benefits, and possible physical harm to humans. It is currently unclear why we typically show poorer performance recognising dog emotions than human emotions. This novel theory-driven PhD project will use state-of-the-art cognitive neuroscience methodologies (EEG, fNIRS, TMS) to examine both similarities and differences in cognitive and neural mechanisms underlying human-human and human-dog emotion communications. This research not only will advance our theoretical understanding of interspecies emotion perception, but also have practical implications for designing effective interventions. For enquiries about this project please contact Prof Kun Guo (

d) A process evaluation of the Cognitive Daisy to support people with dementia living in the community

A process evaluation of the Cognitive Daisy to support people with dementia living in the community: The Cognitive Daisy is a psychosocial intervention which helps carers understand the unique cognitive difficulties each person with dementia experiences.

The successful candidate will undertake a process evaluation to investigate the precise mechanisms of behavioural change that the intervention produces. We aim to identify the optimal conditions for implementing the Cognitive Daisy in different contexts and on a wide scale. The project will deploy both quantitative and qualitative methodologies. Applicants with an interest in person-centred approaches to dementia management from psychology, professions allied to health and social care, nursing or related areas are all eligible to apply. Strong interpersonal and communication skills, an interest in applied neuropsychology and an aptitude for statistics, are required for this post.

For enquiries about this project please contact Dr John Hudson (

e) Perceptual body image: representation, size estimation, and categorical boundary

Within the field of perceptual body image, there are two major concerns: inconsistent methods and a lack of consensus on how to best measure perceptual body image. This PhD project will build upon previous work to determine the most effective ways of quantifying the perception of an individual’s “own size” and use this to further develop a targeted behavioural training technique for improving body image concerns in both clinical and sub-clinical eating disorder populations.

Applications are invited for one PhD studentship under the supervision of Dr Kamila Irvine, Dr Kirsten McKenzie, and Prof Piers Cornelissen (University of Northumbria). We seek a PhD candidate with an interest in perceptual body image. The successful candidate should have proven research skills, and an interest/knowledge of virtual reality and/or body image is desirable. For enquiries about this project please contact Dr Kamila Irvine (

f) Can music reduce emotional eating in children?

This PhD project will aim to understand if music can reduce emotional eating in children. This project is positioned in a novel field of research that is expected to build bridges and contribute to contemporary debate on music, eating behaviour, and emotion regulation. At least three different experimental studies will test whether music can be effective to reduce emotional eating in children aged 5 to 7 years old. This research will also look at factors that may link to emotional eating or responsiveness to music (e.g. music liking, the child’s BMI, and parents’ use of food or music as a reward).

For enquiries about this project please contact Dr Annemieke van den Tol (

Our Research Community

Student Research

Contact Us

If you would like to find out more about postgraduate study at the University of Lincoln or have any questions, please contact our Enquiries team.

Postgraduate Enquiries
University of Lincoln

Brayford Pool
+44 (0)1522 886644