BEng (Hons)
Biomedical Engineering
BEng (Hons)
Biomedical Engineering

Key Information


Duration

3 years

Typical Offer

See More

Campus

Brayford Pool

UCAS Code

H780

Duration

3 years

Typical Offer

See More

Campus

Brayford Pool

UCAS Code

H780

Academic Years

Course Overview

Biomedical engineering is a multidisciplinary field that applies engineering principles to biology, medicine, and healthcare. From development of medical devices to creating advanced digital healthcare technologies, the work of biomedical engineers is to provide engineering solutions that improve human health.

This research-informed programme aims to develop industry-ready graduates with the ability to conceive, design, implement, and deliver sustainable solutions for modern society.

Project-based learning is a key feature of the programme. Students can undertake team-based engineering projects to address societal needs in the first and second years. Students will also have the opportunity to deliver an engineering solution with the consideration of environmental, social, and economic sustainability.

Course Overview

Biomedical engineering is a multidisciplinary field that applies engineering principles to biology, medicine, and healthcare. From development of medical devices to creating advanced digital healthcare technologies, the work of biomedical engineers is to provide engineering solutions that improve human health.

This research-informed programme aims to develop industry-ready graduates with the ability to conceive, design, implement, and deliver sustainable solutions for modern society.

Project-based learning is a key feature of the programme. Students can undertake team-based engineering projects to address societal needs in the first and second years. Students will also have the opportunity to deliver an engineering solution with the consideration of environmental, social, and economic sustainability.

Why Choose Lincoln?

Regular visits from professional engineers and industry experts

Opportunities to spend an additional year in industry

Extensive project-based learning

Industry links offer opportunities for placements, mentoring, and recruitment

Specialist purpose-built facilities and equipment

A range of optional modules to choose from

A student taking part in a practical session

How You Study

In the first year, students can study the common foundations of engineering principles, human anatomy, and the physiology of the human body. In the second year the focus moves to specialised biomedical engineering topics, while the third year offers career focused modules designed to support students in meeting the needs of future employers.

Topics include digital prosthetics, biomedical robots for personal care, medical implants, medical imaging, medical ethics, clinical trials, and regulations. Extra-curricular activities are also available through Lincoln Innovation Hub to help students think, innovate, and build while stimulating their innovation and entrepreneurship skills. Students can access a range of support to help develop their skills, ideas, and ventures at any stage of development and across a wide range of disciplines.

The course is delivered through a combination of classroom and lab-based sessions, design challenges, and business innovation and entrepreneurship activities, to help develop the core skills that students will require as future engineers. Students can also benefit from regular visits from professional engineering and industrial experts, offering an insight into the needs of industry.

How You Study

In the first year, students can study the common foundations of engineering principles, human anatomy, and the physiology of the human body. In the second year the focus moves to specialised biomedical engineering topics, while the third year offers career focused modules designed to support students in meeting the needs of future employers.

Topics include digital prosthetics, biomedical robots for personal care, medical implants, medical imaging, medical ethics, clinical trials, and regulations. Extra-curricular activities are also available through Lincoln Innovation Hub to help students think, innovate, and build while stimulating their innovation and entrepreneurship skills. Students can access a range of support to help develop their skills, ideas, and ventures at any stage of development and across a wide range of disciplines.

The course is delivered through a combination of classroom and lab-based sessions, design challenges, and business innovation and entrepreneurship activities, to help develop the core skills that students will require as future engineers. Students can also benefit from regular visits from professional engineering and industrial experts, offering an insight into the needs of industry.

Modules


† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

Computing and Programming for Engineers 2024-25EGR1013MLevel 42024-25Many sectors of engineering require high levels of computer literacy and the ability to write computer programs for problem solving is highly desirable. In learning the fundamentals of computer programming, logical thinking and problem solving, skills can be developed and coding techniques learnt, that can support the study of modules in forthcoming years. This course delivers the concepts of structured computer programming and lab time is allocated for implementing these concepts. Students are provided with opportunities to plan, write, and debug their own computer programs.CoreDesign Challenge for Engineers 2024-25EGR1022MLevel 42024-25All engineers must be familiar with design strategies, methods of assessing design proposals, approaches to reducing uncertainty, formal communication techniques, and the industrial and legal standards in which they fit. Mechanical Engineering students can independently learn and demonstrate the fundamentals of mechanical technical drawing and computer aided design (CAD), while Electrical Engineering students will independently learn and demonstrate the fundamentals of electrical drawing and CAD. Electrical and Mechanical engineers will then coalesce to form interdisciplinary groups who will produce an electro-mechanical design solution which meets a practical objective and considers the commercial, economic, social and environmental implications via a broad critique of the state of the art.CoreElectrical and Electronic Technology 2024-25ELE1004MLevel 42024-25An understanding of the basic principles and many of the important practical applications of electronic and electrical engineering is now essential to practitioners of other disciplines, especially mechanical engineers. The aim of this module is to provide a foundation in electrical engineering and electronics without being over complicated or cluttered with too-rigorous and exhaustive mathematical elements.CoreEngineering Mechanics 2024-25EGR1016MLevel 42024-25The module can be divided into two topics: Statics and Mechanics: The primary aim of the study of engineering mechanics is to develop students' capacity to predict the effects of force and deformation in the course of carrying out the creative design function of engineering. As students' undertake the study of solids and forces (first statics, mechanics, then dynamics) they can build a foundation of analytical capability for the solution of a great variety of engineering problems. Modern engineering practice demands a high level of analytical capability, and the study of mechanics can help in developing this. Dynamics: The study of dynamics gives students the opportunity to analyse and predict the motion of particles and bodies with and without reference to the forces that cause this motion. Successful prediction requires the ability of visualise physical configurations in terms of real machines ( in addition to knowledge of physical and mathematical principles of mechanics) and actual constraints and the practical limitations which govern the behaviour of machines.CoreMaterials and Methods of Manufacture 2024-25EGR1004MLevel 42024-25The selection of materials and manufacturing method is an integral part of the engineering design procedure. The purpose of this module is to introduce the fundamental properties of engineering materials through an understanding of the atomic and molecular interactions within the material. Students are introduced to the technology of manufacturing processes and how the selection of manufacturing processes are influenced by, and subsequently affect, material properties.CoreMathematical Skills for Engineers 2024-25EGR1014MLevel 42024-25A good mathematical grounding is essential for all engineers. The theory developed in this module aims to underpin the other engineering modules studied at level one. Wherever possible, mathematical theory is taught by considering a real example, to present students the mathematical tools they might need for the science they follow. Solutions are considered by both analytical and numerical techniques.CoreThermofluids 2024-25EGR1017MLevel 42024-25The syllabus for this module can be divided into two topics: Thermodynamics: Thermodynamics is an essential part of engineering curricula all over the world. It is a basic science that deals with energy interactions in physical systems, and the purpose of this module is to study the relationships between heat (thermos) and work (dynamics). This module presents a range of real-world engineering applications to give students a feel for engineering practice and an intuitive understanding of the subject matter. Fluid Mechanics: Fluid Mechanics is the branch of applied mechanics that is concerned with the statics and dynamics of liquids and gases. The analysis of the behaviour of fluids is based upon the fundamental laws of applied mechanics, which relate to the conservation of mass-energy and the force-momentum equation. However, instead of dealing with the behaviour of individual bodies of known mass, Fluid Mechanics is concerned with the behaviour of a continuous stream of fluid. For this reason, Fluid Mechanics is studied separately to other mechanics modules. Due to the similarity of the mathematical techniques, Fluid Mechanics are studied with Thermodynamics.CoreAdvanced Biomedical Engineering Project 2025-26BME2001MLevel 52025-26This module aims to deepen students’ understanding of engineering in practical applications. Students investigate the design process for biomedical components/systems and undertake analysis of them. The design project undertaken will be industry-focussed. This major project will allow students to extend their creative design skills and obtain practical experience of the process of creating sound conceptual solutions through to real design problems within an industrial context. Students can build confidence and gain experience through working within a team.CoreAnatomy and Physiology 2025-26BME2005Level 52025-26This module aims to provide an overview of the anatomy and physiology of the human body. The module is designed to help students to identify and understand the function of human bones, muscles, and joints. It will also provide an overview of the anatomical structure and physiology of the heart, lung, cardiovascular, and respiratory systems.CoreBiomaterials 2025-26BME2002MLevel 52025-26This module aims to introduce students to biomaterials, including the properties of natural materials and the behaviour of artificial materials when implanted on or in contact with the human body. Students are also introduced to the reaction of materials to implantation in the body; the reaction of the body to the presence of implanted materials; the uses of polymers, ceramics, metals and composites as biomaterials; concepts of biocompatibility and bioacitve methods of assessing these; and basic applications of biomaterials in the body and the resultant interactions.CoreData Modelling and Simulation 2025-26EGR2010MLevel 52025-26The purpose of this programme of mathematical study is to give students the opportunity to become more competent in calculations using a range of mathematical tools. The content builds upon that delivered in the first year, and gives students the opportunity to extend their analytical skills by introducing more advanced topics that may form part of the modern engineers skill set.CoreDigital Systems And Analog Electronics 2025-26BME2003MLevel 52025-26This modules introduces the basic knowledge required to understand, design, and work with basic electronic circuits and the basic principles underlying the process of electronic engineering. No previous electronics experience is assumed and the module proceeds via a sequence of lectures supported by labs designed to introduce practical electronics.CoreKinematics and Biomechanics 2025-26BME2004MLevel 52025-26This module provides an understanding of the core concepts of mechanics such as mass, force, velocity, acceleration, work, energy, and power. Students can develop the necessary skills to apply the fundamental laws of mechanics such as Newton’s laws and conservation of energy to perform quantitative analysis of human body motion and equilibrium.CoreMechatronics Systems 2025-26ELE2003MLevel 52025-26The term mechatronics integrates mechanical engineering with electronics and intelligent computer control in the design and manufacture of products and processes. As a result, many products which used to have mechanical functions have had many replaced with ones involving microprocessors. This has resulted in much flexibility, easier redesign and reprogramming, and the ability to carry out automated data collection and reporting. A consequence of this approach is the need for engineers to adopt an interdisciplinary and integrated approach to engineering. The overall aim of this module is to give a comprehensive coverage of topics, such as analogue and digital signals, digital logic, sensors and signal conditioning, data acquisition systems, data presentation systems, mechanical and electrical actuation systems, microcontroller programming and interfacing, system response and modelling, and feedback control. Students may make extensive use of Simulink and a MATLAB support packages based an Arduino board, which allow for graphical simulation and programming of real-time control systems. The module serves as an introductory course to more advanced courses such as Measurement and Testing, Sensors, Actuators and Controllers, and Embedded Systems.CoreSolid Body Mechanics 2025-26EGR2012MLevel 52025-26This programme of study will extend the ideas and skills introduced at Level 1. Students have the opportunity to learn how to carry out strength and deflection analyses for a variety of simple load cases and structures. Students have the opportunity to understand the simplifications used in such analyses. This course demonstrates the role of stress analysis and failure prediction in the design environment.CoreEngineering Year in Industry 2025-26EGR2015XLevel 52025-26The Placement Year constitutes a work placement during an academic year, typically between Levels 2 and Level 3, though it may take place between levels 3 and 4 of an MEng programme. Students wishing to undertake the work placement year must successfully complete Level 2 (and 3 if applicable) of their programme. The Placement Year aims to give students a continuous experience of full-time work within an organisation. It should be a three-way co-operative activity between employer, student, and University. Work placements enable students to experience at first hand the daily workings of an organisation while setting that experience in the broader context of their studies.OptionalBiomedical Imaging and Signal Processing 2026-27BME3002MLevel 62026-27In this module students study a range of signal and image processing techniques and learn how they can be used to analyse a range of biomedical signals and images. Whilst learning general and specific analysis techniques, students can also gain insight into relevant biomedical background and many of the engineering principles that underlie the operation of key devices that are used to record biomedical signals or generate biomedical images. The module will also discuss engineering issues in the wider context of exploiting engineering for health-care, including relevant ethical and economic issues and multidisciplinary collaboration and communication.CoreComputational Fluid Dynamics 2026-27EGR3005MLevel 62026-27The purpose of this module is to introduce the full Navier-Stokes equations and give the physical significance of each term in the equations. Students are introduced to CFD techniques appropriate for practical engineering applications, (the finite volume method), and they have the opportunity to gain practical, hands-on experience of commercial CFD packages. This module offers students the opportunity to model industrial fluid dynamics and heat transfer problems.CoreIndividual Project (Bachelors) 2026-27EGR3024MLevel 62026-27The individual project aims to provide students with a learning experience that enables them to carry out independent research, and to integrate many of the subjects they have studied throughout their degree. Students are expected to plan, research and execute their task while developing skills in critical judgement, independent work and engineering competence. Students have the opportunity to gain experience in presenting and reporting a major piece of engineering work, of immediate engineering value, at a level appropriate for an honours degree student.CoreBioinformatics and Data Management 2026-27BME3001MLevel 62026-27The aim of this module is to introduce a range of computational methodologies to analyse biological data, make new predictions, and support the understanding of biological mechanisms. The module content will include an introduction to data types and databases and relevant methods of bioinformatics. The overall aim is to support a comprehensive understanding of computational applications for data analysis and simulation providing multiple examples.OptionalBiomedical Business, Innovation and Entrepreneurship 2026-27BME3003MLevel 62026-27The Biomedical Business, Innovation and Entrepreneurship module has been designed so that upon completion of the module students will be able to use entrepreneurial skills gained through the study of theory and practice and as a result be able to pursue careers in a range of industries related to biomedical engineering. The module aims to equip students with a depth of innovation and entrepreneurial theory which forms a foundation of knowledge. Students study the various theoretical aspects of both foundation and contemporary aspects of entrepreneurship and enterprise in order to self-appraise their own personal environment. The module examines modern day success stories of contemporary businesses in engineering and manufacturing and traces their origins and reasons for successful accomplishments. It aims to reflect the entrepreneurial learning process which informs how entrepreneurs learn from previous mistakes. The module offers a generic examination of the principles of business studies, entrepreneurship, and entrepreneurial activity, within a variety of settings of SMEs and regional and rural settings. The main aim of this module is to highlight the main competences that future biomedical engineers should have to act successfully in the field of innovation.OptionalFinite Element Analysis 2026-27EGR3006MLevel 62026-27The purpose of this module is to introduce students to the theory and practice of the finite element method, with applications in stress analysis, heat transfer, and general field problems in order to complement other modules in these subjects. Students have the opportunity to learn of the capabilities and limitations of the finite element method and the practical problems involved in successfully modelling engineering structures and components.OptionalInternet of Things and Smart Electronics 2026-27ELE3006MLevel 62026-27This module is intended to introduce students with the fast growing area of consumer electronics design. Apart from interface and size issues, portable consumer electronics present some of the toughest design and engineering challenges in all of technology. This module breaks the complex design process down into its component parts, detailing every crucial issue from interface design to chip packaging, focusing upon the key design parameters of convenience, utility and size.OptionalOrthotics and Prosthetics 2026-27BME3004MLevel 62026-27This is an introductory module in the designing and evaluation of prosthetics (artificial limbs), and orthotics (braces and splints). The module provides a basic grounding in the theory and application of the broad engineering sciences that underpin prosthetic and orthotic practice. The module aims to help students to develop a patient-centred approach to the clinical practice of prosthetics and orthotics. The module aims to develop knowledge and understanding of lower limb prosthetic and orthotic rehabilitation and management based on a patient-centred approach. It will also seek to develop students’ skills in recognising and responding to the trends that shape prosthetics and orthotics. Emphasis will be placed on practical applications in a variety of amputations and malfunctions in humans. Design, safety consideration, and control strategies will be considered for various prosthetics and orthotics.Optional

Modules


† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

Computing and Programming for Engineers 2025-26EGR1013MLevel 42025-26Many sectors of engineering require high levels of computer literacy and the ability to write computer programs for problem solving is highly desirable. In learning the fundamentals of computer programming, logical thinking and problem solving, skills can be developed and coding techniques learnt, that can support the study of modules in forthcoming years. This course delivers the concepts of structured computer programming and lab time is allocated for implementing these concepts. Students are provided with opportunities to plan, write, and debug their own computer programs.CoreDesign Challenge for Engineers 2025-26EGR1022MLevel 42025-26All engineers must be familiar with design strategies, methods of assessing design proposals, approaches to reducing uncertainty, formal communication techniques, and the industrial and legal standards in which they fit. Mechanical Engineering students can independently learn and demonstrate the fundamentals of mechanical technical drawing and computer aided design (CAD), while Electrical Engineering students will independently learn and demonstrate the fundamentals of electrical drawing and CAD. Electrical and Mechanical engineers will then coalesce to form interdisciplinary groups who will produce an electro-mechanical design solution which meets a practical objective and considers the commercial, economic, social and environmental implications via a broad critique of the state of the art.CoreElectrical and Electronic Technology 2025-26ELE1004MLevel 42025-26An understanding of the basic principles and many of the important practical applications of electronic and electrical engineering is now essential to practitioners of other disciplines, especially mechanical engineers. The aim of this module is to provide a foundation in electrical engineering and electronics without being over complicated or cluttered with too-rigorous and exhaustive mathematical elements.CoreEngineering Mechanics 2025-26EGR1016MLevel 42025-26The module can be divided into two topics: Statics and Mechanics: The primary aim of the study of engineering mechanics is to develop students' capacity to predict the effects of force and deformation in the course of carrying out the creative design function of engineering. As students' undertake the study of solids and forces (first statics, mechanics, then dynamics) they can build a foundation of analytical capability for the solution of a great variety of engineering problems. Modern engineering practice demands a high level of analytical capability, and the study of mechanics can help in developing this. Dynamics: The study of dynamics gives students the opportunity to analyse and predict the motion of particles and bodies with and without reference to the forces that cause this motion. Successful prediction requires the ability of visualise physical configurations in terms of real machines ( in addition to knowledge of physical and mathematical principles of mechanics) and actual constraints and the practical limitations which govern the behaviour of machines.CoreMaterials and Methods of Manufacture 2025-26EGR1004MLevel 42025-26The selection of materials and manufacturing method is an integral part of the engineering design procedure. The purpose of this module is to introduce the fundamental properties of engineering materials through an understanding of the atomic and molecular interactions within the material. Students are introduced to the technology of manufacturing processes and how the selection of manufacturing processes are influenced by, and subsequently affect, material properties.CoreMathematical Skills for Engineers 2025-26EGR1014MLevel 42025-26A good mathematical grounding is essential for all engineers. The theory developed in this module aims to underpin the other engineering modules studied at level one. Wherever possible, mathematical theory is taught by considering a real example, to present students the mathematical tools they might need for the science they follow. Solutions are considered by both analytical and numerical techniques.CoreThermofluids 2025-26EGR1017MLevel 42025-26The syllabus for this module can be divided into two topics: Thermodynamics: Thermodynamics is an essential part of engineering curricula all over the world. It is a basic science that deals with energy interactions in physical systems, and the purpose of this module is to study the relationships between heat (thermos) and work (dynamics). This module presents a range of real-world engineering applications to give students a feel for engineering practice and an intuitive understanding of the subject matter. Fluid Mechanics: Fluid Mechanics is the branch of applied mechanics that is concerned with the statics and dynamics of liquids and gases. The analysis of the behaviour of fluids is based upon the fundamental laws of applied mechanics, which relate to the conservation of mass-energy and the force-momentum equation. However, instead of dealing with the behaviour of individual bodies of known mass, Fluid Mechanics is concerned with the behaviour of a continuous stream of fluid. For this reason, Fluid Mechanics is studied separately to other mechanics modules. Due to the similarity of the mathematical techniques, Fluid Mechanics are studied with Thermodynamics.CoreAdvanced Biomedical Engineering Project 2026-27BME2001MLevel 52026-27This module aims to deepen students’ understanding of engineering in practical applications. Students investigate the design process for biomedical components/systems and undertake analysis of them. The design project undertaken will be industry-focussed. This major project will allow students to extend their creative design skills and obtain practical experience of the process of creating sound conceptual solutions through to real design problems within an industrial context. Students can build confidence and gain experience through working within a team.CoreAnatomy and Physiology 2026-27BME2005Level 52026-27This module aims to provide an overview of the anatomy and physiology of the human body. The module is designed to help students to identify and understand the function of human bones, muscles, and joints. It will also provide an overview of the anatomical structure and physiology of the heart, lung, cardiovascular, and respiratory systems.CoreBiomaterials 2026-27BME2002MLevel 52026-27This module aims to introduce students to biomaterials, including the properties of natural materials and the behaviour of artificial materials when implanted on or in contact with the human body. Students are also introduced to the reaction of materials to implantation in the body; the reaction of the body to the presence of implanted materials; the uses of polymers, ceramics, metals and composites as biomaterials; concepts of biocompatibility and bioactive methods of assessing these; and basic applications of biomaterials in the body and the resultant interactions.CoreData Modelling and Simulation 2026-27EGR2010MLevel 52026-27The purpose of this programme of mathematical study is to give students the opportunity to become more competent in calculations using a range of mathematical tools. The content builds upon that delivered in the first year, and gives students the opportunity to extend their analytical skills by introducing more advanced topics that may form part of the modern engineers skill set.CoreDigital Systems And Analog Electronics 2026-27BME2003MLevel 52026-27This modules introduces the basic knowledge required to understand, design, and work with basic electronic circuits and the basic principles underlying the process of electronic engineering. No previous electronics experience is assumed and the module proceeds via a sequence of lectures supported by labs designed to introduce practical electronics.CoreKinematics and Biomechanics 2026-27BME2004MLevel 52026-27This module provides an understanding of the core concepts of mechanics such as mass, force, velocity, acceleration, work, energy, and power. Students can develop the necessary skills to apply the fundamental laws of mechanics such as Newton’s laws and conservation of energy to perform quantitative analysis of human body motion and equilibrium.CoreMechatronics Systems 2026-27ELE2003MLevel 52026-27The term mechatronics integrates mechanical engineering with electronics and intelligent computer control in the design and manufacture of products and processes. As a result, many products which used to have mechanical functions have had many replaced with ones involving microprocessors. This has resulted in much flexibility, easier redesign and reprogramming, and the ability to carry out automated data collection and reporting. A consequence of this approach is the need for engineers to adopt an interdisciplinary and integrated approach to engineering. The overall aim of this module is to give a comprehensive coverage of topics, such as analogue and digital signals, digital logic, sensors and signal conditioning, data acquisition systems, data presentation systems, mechanical and electrical actuation systems, microcontroller programming and interfacing, system response and modelling, and feedback control. Students may make extensive use of Simulink and a MATLAB support packages based an Arduino board, which allow for graphical simulation and programming of real-time control systems. The module serves as an introductory course to more advanced courses such as Measurement and Testing, Sensors, Actuators and Controllers, and Embedded Systems.CoreSolid Body Mechanics 2026-27EGR2012MLevel 52026-27This programme of study will extend the ideas and skills introduced at Level 1. Students have the opportunity to learn how to carry out strength and deflection analyses for a variety of simple load cases and structures. Students have the opportunity to understand the simplifications used in such analyses. This course demonstrates the role of stress analysis and failure prediction in the design environment.CoreEngineering Year in Industry 2026-27EGR2015XLevel 52026-27The Placement Year constitutes a work placement during an academic year, typically between Levels 2 and Level 3, though it may take place between levels 3 and 4 of an MEng programme. Students wishing to undertake the work placement year must successfully complete Level 2 (and 3 if applicable) of their programme. The Placement Year aims to give students a continuous experience of full-time work within an organisation. It should be a three-way co-operative activity between employer, student, and University. Work placements enable students to experience at first hand the daily workings of an organisation while setting that experience in the broader context of their studies.OptionalBiomedical Imaging and Signal Processing 2027-28BME3002MLevel 62027-28In this module students study a range of signal and image processing techniques and learn how they can be used to analyse a range of biomedical signals and images. Whilst learning general and specific analysis techniques, students can also gain insight into relevant biomedical background and many of the engineering principles that underlie the operation of key devices that are used to record biomedical signals or generate biomedical images. The module will also discuss engineering issues in the wider context of exploiting engineering for health-care, including relevant ethical and economic issues and multidisciplinary collaboration and communication.CoreComputational Fluid Dynamics 2027-28EGR3005MLevel 62027-28The purpose of this module is to introduce the full Navier-Stokes equations and give the physical significance of each term in the equations. Students are introduced to CFD techniques appropriate for practical engineering applications, (the finite volume method), and they have the opportunity to gain practical, hands-on experience of commercial CFD packages. This module offers students the opportunity to model industrial fluid dynamics and heat transfer problems.CoreIndividual Project (Bachelors) 2027-28EGR3024MLevel 62027-28The individual project aims to provide students with a learning experience that enables them to carry out independent research, and to integrate many of the subjects they have studied throughout their degree. Students are expected to plan, research and execute their task while developing skills in critical judgement, independent work and engineering competence. Students have the opportunity to gain experience in presenting and reporting a major piece of engineering work, of immediate engineering value, at a level appropriate for an honours degree student.CoreBioinformatics and Data Management 2027-28BME3001MLevel 62027-28The aim of this module is to introduce a range of computational methodologies to analyse biological data, make new predictions, and support the understanding of biological mechanisms. The module content will include an introduction to data types and databases and relevant methods of bioinformatics. The overall aim is to support a comprehensive understanding of computational applications for data analysis and simulation providing multiple examples.OptionalBiomedical Business, Innovation and Entrepreneurship 2027-28BME3003MLevel 62027-28The Biomedical Business, Innovation and Entrepreneurship module has been designed so that upon completion of the module students will be able to use entrepreneurial skills gained through the study of theory and practice and as a result be able to pursue careers in a range of industries related to biomedical engineering. The module aims to equip students with a depth of innovation and entrepreneurial theory which forms a foundation of knowledge. Students study the various theoretical aspects of both foundation and contemporary aspects of entrepreneurship and enterprise in order to self-appraise their own personal environment. The module examines modern day success stories of contemporary businesses in engineering and manufacturing and traces their origins and reasons for successful accomplishments. It aims to reflect the entrepreneurial learning process which informs how entrepreneurs learn from previous mistakes. The module offers a generic examination of the principles of business studies, entrepreneurship, and entrepreneurial activity, within a variety of settings of SMEs and regional and rural settings. The main aim of this module is to highlight the main competences that future biomedical engineers should have to act successfully in the field of innovation.OptionalFinite Element Analysis 2027-28EGR3006MLevel 62027-28The purpose of this module is to introduce students to the theory and practice of the finite element method, with applications in stress analysis, heat transfer, and general field problems in order to complement other modules in these subjects. Students have the opportunity to learn of the capabilities and limitations of the finite element method and the practical problems involved in successfully modelling engineering structures and components.OptionalInternet of Things and Smart Electronics 2027-28ELE3006MLevel 62027-28This module is intended to introduce students with the fast growing area of consumer electronics design. Apart from interface and size issues, portable consumer electronics present some of the toughest design and engineering challenges in all of technology. This module breaks the complex design process down into its component parts, detailing every crucial issue from interface design to chip packaging, focusing upon the key design parameters of convenience, utility and size.OptionalOrthotics and Prosthetics 2027-28BME3004MLevel 62027-28This is an introductory module in the designing and evaluation of prosthetics (artificial limbs), and orthotics (braces and splints). The module provides a basic grounding in the theory and application of the broad engineering sciences that underpin prosthetic and orthotic practice. The module aims to help students to develop a patient-centred approach to the clinical practice of prosthetics and orthotics. The module aims to develop knowledge and understanding of lower limb prosthetic and orthotic rehabilitation and management based on a patient-centred approach. It will also seek to develop students’ skills in recognising and responding to the trends that shape prosthetics and orthotics. Emphasis will be placed on practical applications in a variety of amputations and malfunctions in humans. Design, safety consideration, and control strategies will be considered for various prosthetics and orthotics.Optional

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. In addition to the information provided on this course page, our What You Need to Know page offers explanations on key topics including programme validation/revalidation, additional costs, contact hours, and our return to face-to-face teaching.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. In addition to the information provided on this course page, our What You Need to Know page offers explanations on key topics including programme validation/revalidation, additional costs, contact hours, and our return to face-to-face teaching.

How you are assessed

Assessment on the Biomedical Engineering programme focuses on measuring and assessing engineering technical and analytical skills as well as professional soft skills including oral and written communication, team working, lifelong learning, problem-solving, project management, and planning and organisation.

Students are continuously assessed throughout the course through a wide range of assessments methods including examinations, practical reports, project portfolios, individual and group presentations, individual group project work, and computer based assessment.

How you are assessed

Assessment on the Biomedical Engineering programme focuses on measuring and assessing engineering technical and analytical skills as well as professional soft skills including oral and written communication, team working, lifelong learning, problem-solving, project management, and planning and organisation.

Students are continuously assessed throughout the course through a wide range of assessments methods including examinations, practical reports, project portfolios, individual and group presentations, individual group project work, and computer based assessment.

Placements

A sandwich option is available on this programme, providing you with the opportunity to spend a year in industry. You are encouraged to obtain placements in industry independently, however tutors may provide support and advice to those who require it during this process. While undertaking placements, you are responsible for your own travel, living, and accommodation costs.

What Can I Do with a Biomedical Engineering Degree?

Biomedical engineering represents a new area of medical research and product development, with biomedical engineers working to pave the way for new methods of helping to treat injuries and diseases. As medicine is a field with vast numbers of specific disciplines, there are many different sub-fields in which biomedical engineers may work. Some work to improve and develop new machinery, such as robotic surgery equipment, while others endeavour to create better, more reliable replacement limbs (or parts which help existing limbs function better, such as joint replacements).

Biomedical engineers may become involved in a multitude of different roles including the design of medical devices, modelling and simulation of human physiology and anatomy, supporting hospitals in clinical and financial governance of existing medical equipment, development of artificial organs, computer-simulated or image-guided surgery, robot-assisted surgery, development of orthopaedic implants, medical imaging, assistive technologies, and mobile and e-health.

Entry Requirements 2024-25

United Kingdom

104 UCAS Tariff points from a minimum of 2 A Levels to include 40 points from Maths.

International Baccalaureate: Pass Diploma from a minimum of 2 Higher Level subjects to include a Higher Level 5 in Maths.

BTEC Extended Diploma in Engineering: Distinction, Merit, Merit or equivalent.

T Level: Merit in Engineering

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 104 UCAS Tariff points, including 40 points from 15 credits in Maths.

Applicants will also need at least three GCSEs at grade 4 or above, which must include English and Maths. Equivalent Level 2 qualifications may also be considered.

The University accepts a wide range of qualifications as the basis for entry and do accept a combination of qualifications which may include A Levels, BTECs, EPQ etc.

We will also consider applicants with extensive and relevant work experience and will give special individual consideration to those who do not meet the standard entry qualifications.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages for information on equivalent qualifications.

https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page.

https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/pre-sessionalenglishandacademicstudyskills/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Contextual Offers

At Lincoln, we recognise that not everybody has had the same advice and support to help them get to higher education. Contextual offers are one of the ways we remove the barriers to higher education, ensuring that we have fair access for all students regardless of background and personal experiences. For more information, including eligibility criteria, visit our Offer Guide pages.

Entry Requirements 2025-26

United Kingdom

104 UCAS Tariff points from a minimum of 2 A Levels or equivalent qualifications to include 40 points from Maths.

BTEC Extended Diploma in Engineering: Distinction, Merit, Merit.

T Level in Engineering: Merit.

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 104 UCAS Tariff points, including 40 points from 15 credits in Maths.

International Baccalaureate: 28 points overall to include a Higher Level 5 in Maths.

GCSE's: Minimum of three at grade 4 or above, which must include English and Maths. Equivalent Level 2 qualifications may also be considered.


The University accepts a wide range of qualifications as the basis for entry and do accept a combination of qualifications which may include A Levels, BTECs, EPQ etc.

We may also consider applicants with extensive and relevant work experience and will give special individual consideration to those who do not meet the standard entry qualifications.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages for information on equivalent qualifications.

https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page.

https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/pre-sessionalenglishandacademicstudyskills/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Contextual Offers

At Lincoln, we recognise that not everybody has had the same advice and support to help them get to higher education. Contextual offers are one of the ways we remove the barriers to higher education, ensuring that we have fair access for all students regardless of background and personal experiences. For more information, including eligibility criteria, visit our Offer Guide pages.

Fees and Scholarships

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. To help support students from outside of the UK, we are also delighted to offer a number of international scholarships which range from £1,000 up to the value of 50 per cent of tuition fees. For full details and information about eligibility, visit our scholarships and bursaries pages.

Fees and Scholarships

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. To help support students from outside of the UK, we are also delighted to offer a number of international scholarships which range from £1,000 up to the value of 50 per cent of tuition fees. For full details and information about eligibility, visit our scholarships and bursaries pages.

Find out More by Visiting Us

The best way to find out what it is really like to live and learn at Lincoln is to visit us in person. We offer a range of opportunities across the year to help you to get a real feel for what it might be like to study here.

Book Your Place
Three students walking together on campus in the sunshine
The University intends to provide its courses as outlined in these pages, although the University may make changes in accordance with the Student Admissions Terms and Conditions.