Key Information

Full-time

3 years

Typical Offer

View

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

H301

Course Code

EGREGRUB

Key Information

Full-time

3 years

Typical Offer

View

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

H301

Course Code

EGREGRUB

BEng (Hons) Mechanical Engineering BEng (Hons) Mechanical Engineering

Mechanical Engineering at Lincoln is ranked in the top 20 in the UK for overall student satisfaction according to the National Student Survey 2020.

Key Information

Full-time

3 years

Typical Offer

View

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

H301

Course Code

EGREGRUB

Key Information

Full-time

3 years

Typical Offer

View

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

H301

Course Code

EGREGRUB

Select Year of Entry

Dr Khaled Goher - Programme Leader

Dr Khaled Goher - Programme Leader

Dr Goher is committed to developing career-focused programmes which aim to prepare graduates with the industry relevant skills they need to support businesses and organisations. He has expertise in work-related learning, which aims to narrow the gap between employer requirements and students' skills, to enhance graduate employability and to facilitate the transition from higher education to work. His research interests include healthcare technologies, personal care, and medical robotics and prosthetics.

School Staff List

Welcome to BEng (Hons) Mechanical Engineering

The BEng (Hons) Mechanical Engineering degree at Lincoln aims to produce industry-ready graduates with product design and innovative sense who are highly-skilled, creative engineers able to adapt to new challenges and deliver sustainable solutions for modern society.

The curriculum aims to support students in bridging the gap between the University and professional work by developing skills that are required by industry. The programme offers condensed yet impactful modules that are designed to arm our students with knowledge, skills, and tools to maximise their opportunities to secure a great career.

Founded in collaboration with Siemens, the University of Lincolns School of Engineering has a core philosophy of research-led teaching. Our innovative industrial collaborations have led to a range of workplace experience opportunities. The University is also one of a select group of Siemens' Global Principal Partners.

Strong links exist between our Mechanical and Electrical programmes, enabling our students to develop the strong cross-disciplinary focus necessary for the modern engineer, and an understanding of industry perspectives.

Welcome to BEng (Hons) Mechanical Engineering

The BEng (Hons) Mechanical Engineering degree at Lincoln aims to produce industry-ready graduates with product design and innovative sense who are highly-skilled, creative engineers able to adapt to new challenges and deliver sustainable solutions for modern society.

The curriculum aims to support students in bridging the gap between the University and professional work by developing skills that are required by industry. The programme offers condensed yet impactful modules that are designed to arm our students with knowledge, skills, and tools to maximise their opportunities to secure a great career.

Founded in collaboration with Siemens, the University of Lincolns School of Engineering has a core philosophy of research-led teaching. Our innovative industrial collaborations have led to a range of workplace experience opportunities. The University is also one of a select group of Siemens' Global Principal Partners.

Strong links exist between our Mechanical and Electrical programmes, enabling our students to develop the strong cross-disciplinary focus necessary for the modern engineer, and an understanding of industry perspectives.

How You Study

The Mechanical Engineering programme utilises problem- and project-based learning. We aim to narrow the gap between employers requirements and our graduates skills to improve employability and help facilitate their transition from higher education to work.

The first year of the degree is designed to provide a foundation in engineering theory and practice. Students are supported in their development of important technical skills, such as computer-aided design and workshop skills. The second and third years offer a range of specialist modules. At each stage of the course, there are opportunities to practise and develop engineering skills on real-life problems through project work.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. To help you choose the course that’s right for you, we aim to bring to your attention all the important information you may need. Our What You Need to Know page offers detailed information on key areas including contact hours, assessment, optional modules, and additional costs.

Find out More

How You Study

The Mechanical Engineering programme utilises problem- and project-based learning. We aim to narrow the gap between employers requirements and our graduates skills to improve employability and help facilitate their transition from higher education to work.

The first year of the degree is designed to provide a foundation in engineering theory and practice. Students are supported in their development of important technical skills, such as computer-aided design and workshop skills. The second and third years offer a range of specialist modules. At each stage of the course, there are opportunities to practise and develop engineering skills on real-life problems through project work.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. To help you choose the course that’s right for you, we aim to bring to your attention all the important information you may need. Our What You Need to Know page offers detailed information on key areas including contact hours, assessment, optional modules, and additional costs.

Find out More

Teaching and Learning During Covid-19

Information for Offer Holders Joining Us in Autumn 2021

Letter from Head of School of Engineering

We are delighted you are interested in joining us at the University of Lincoln and I am writing to let you know about our planning for the new academic year. You currently have an offer of a place at the University, and we want to keep you updated so you can start preparing for your future, should you be successful in meeting any outstanding conditions of your offer.

We fully intend your experience with us at Lincoln will be engaging, supportive and academically challenging. We are determined to provide our students with a safe and exciting campus experience, ensuring you benefit from the best that both face-to-face and online teaching offer. We have kept our focus on friendliness and community spirit at Lincoln and we look forward to your participation in that community.

As you know, the UK Government has published its roadmap for the easing of Coronavirus lockdown restrictions in England. There are still some uncertainties for universities around possible restrictions for the next academic year, particularly in relation to social distancing in large group teaching. We are planning in line with government guidance for both face-to-face and online teaching to ensure you have a good campus experience and can complete all the requirements for your programme.  We are fully prepared to adapt and flex our plans if changes in government regulations make this necessary during the year.

Face-to-face teaching and interaction with tutors and course mates are key to students’ learning and the broader student experience. Face-to-face sessions will be prioritised where it is most valuable, particularly for seminars, tutorials, workshops, practical and lab sessions. Students tell us that there are real benefits to some elements of online learning within a blended approach, such as revisiting recorded materials and developing new digital skills and confidence.  At Lincoln we aim to take forward the best aspects of both.

This letter sets out in detail various aspects of the planned experience at Lincoln for your chosen subject area, and we hope the information is helpful as you plan for your future.

Teaching and Learning

Engineering is very much a hands-on discipline, and we incorporate several opportunities for you to move beyond the classroom within our curriculum. This will include practical/workshop classes to develop your technical and practical skills. It is our intention to offer these opportunities unless public health restrictions prevent us from doing so. Access to our specialist facilities is at the forefront of our delivery and we plan to provide you with as full a face-to-face experience in laboratories/workshops along with personal tutoring, seminars, and small group teaching. Within the School of Engineering, we also undertake to provide students with a range of assessment methods, which may include assessment of technical skills, presentation skills, essay/report writing, and a range of online and in person opportunities to demonstrate your learning, understanding and development as you progress through the curriculum. For our accredited programmes we continue to work with our accrediting bodies of the IMechE and IET, confirming with them the standards required of such accreditations continue to be met should any adjustments to delivery or assessment be required as per last year.

We recognise that there are no guarantees in the current pandemic, and students may have questions regarding their programme of study, Lincoln, or any other aspect of their university experience. We will communicate with you via e-mail, either from the University or from the School for more specific information, as necessary. In addition, we provide below an e-mail address for you to contact us should you have queries that have not been addressed – we would love to hear from you as we move towards the new academic year so, please do get in touch using the e-mail address at the end of this letter if you need us – it is our job to make your time at Lincoln as rewarding as possible.

The University Campus

We are very proud of our beautiful and vibrant campuses at the University of Lincoln and we have used our extensive indoor and outdoor spaces to provide students with access to study and social areas as well as learning resources and facilities, adapting them where necessary in line with government guidance. All the mitigations and safety measures you would expect are in place on our campuses (at Lincoln, Riseholme and Holbeach), such as hand sanitisers, one-way systems, and other social distancing measures where these are required.

Student Wellbeing and Support

The University’s Student Wellbeing Centre and Student Support Centre are fully open for face-to-face and online support. Should you, as one of our applicants, have any questions about coming to Lincoln in October or any other concerns, these specialist teams are here for you. You can contact Student Wellbeing and the Student Support Centre by visiting https://studentservices.lincoln.ac.uk where service details and contact information are available, or if you are in Lincoln you can make an appointment to meet a member of the team.

To enable you to make the most out of your experience in Lincoln and to help you access course materials and other services, we recommend that you have a desktop, laptop or tablet device available during your studies. This will enable you to engage easily with our online learning platforms from your student accommodation or from home. Students can use IT equipment on campus in the Library, our learning lounges, and specialist academic areas; however, there may not always be a space free when you have a timetabled session or an assessment to complete which is why we recommend you have your own device too, if possible. If you are struggling to access IT equipment or reliable internet services, please contact ICT for technical support and Student Support who can assist you with further advice and information.

We are committed to providing you with the best possible start to university life and to helping you to prepare for your time with us. As part of this commitment, you can access our Student Life pre-arrival online support package. This collection of digital resources, advice and helpful tips created by current students is designed to help you prepare for the all-important first steps into higher education, enabling you to learn within a supportive community and to make the most of the new opportunities that the University of Lincoln provides. When you are ready, you can begin by going to studentlife.lincoln.ac.uk/starting.

Students’ Union

Your Students’ Union is here to make sure that you get the most from every aspect of your student experience. They will be providing a huge range of in-person and virtual events and opportunities - you are sure to find something perfect for you! Meet people and find a new hobby by joining one of their 150 sports teams and societies. Grab lunch between teaching or a drink with friends in The Swan, Towers or The Barge. Learn new skills and boost your CV by taking part in training courses and volunteering opportunities in your spare time. Grab a bike from the Cycle Hire and explore the city you will be calling home.

To kick-off the new academic year, your Students’ Union will be bringing you The Official Lincoln Freshers Week 2021, with a huge line-up of social events, club nights, fayres and activities for you enjoy (restrictions permitting). Keep an eye on www.facebook.com/lincolnfreshers21 for line-up and ticket updates, so you don’t miss out.

Most importantly, your Students’ Union will always be there for you when you need it most; making sure that your voice as a student is always heard. The SU Advice Centre can provide independent advice and support on housing, finance, welfare and academic issues. As well as this, your Course Representatives are always on hand to make sure that you are getting the best from your academic experience. To find out more about the Students’ Union’s events, opportunities, support and how to get in contact go to: www.lincolnsu.com.

Student Accommodation

Many applicants will choose to live in dedicated student accommodation on, or close to, campus and you may well have already booked your student residence for the upcoming year. All University-managed student accommodation will have our Residential Wardens in place. Residential Wardens are here to help you settle into your new accommodation and will be offering flatmate and residential support activities throughout the year. If you have booked University accommodation, you will have already heard from us with further details on where you will be living to help you prepare. If you have not yet booked your accommodation, we still have plenty of options available. In the meantime, lots of advice and information can be found on the accommodation pages of our website.

The information detailed in this letter will form part of your agreement with the University of Lincoln. If we do not hear from you to the contrary prior to enrolment, we will assume that you acknowledge and accept the information contained in this letter. Adaptations to how we work may have to be made in line with any future changes in government guidance, and we will communicate these with you as necessary. Please do review the University’s Admissions Terms and Conditions (in particular sections 8 and 9) and Student Complaints Procedure so you understand your rights and the agreement between the University and its students.

We very much hope this information is useful to help you plan for the next step in your academic journey, and we look forward to welcoming you here at Lincoln this Autumn. This is the start of a new phase and will be an exciting time for all of us. If you have any questions, please do email me at aelseragy@lincoln.ac.uk.

Ahmed Elseragy

Head of the School of Engineering

† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

Computing and Programming for Engineers 2022-23EGR1013MLevel 42022-23Many sectors of engineering require high levels of computer literacy and the ability to write computer programs for problem solving is highly desirable. In learning the fundamentals of computer programming, logical thinking and problem solving, skills can be developed and coding techniques learnt, that can support the study of modules in forthcoming years. This course delivers the concepts of structured computer programming and lab time is allocated for implementing these concepts. Students are provided with opportunities to plan, write, and debug their own computer programs.CoreDesign Challenge for Engineers 2022-23EGR1022MLevel 42022-23All engineers must be familiar with design strategies, methods of assessing design proposals, approaches to reducing uncertainty, formal communication techniques and the industrial and legal standards in which they fit. Mechanical Engineering students will independently learn and demonstrate the fundamentals of mechanical technical drawing and computer aided design (CAD); Electrical Engineers will independently learn and demonstrate the fundamentals of electrical drawing and CAD. Electrical and Mechanical engineers will then coalesce to form interdisciplinary groups who will produce an electro-mechanical design solution which meets a practical objective and considers the commercial, economic, social and environmental implications via a broad critique of the state of the art.CoreElectrical and Electronic Technology 2022-23ELE1004MLevel 42022-23An understanding of the basic principles and many of the important practical applications of electronic and electrical engineering is now essential to practitioners of other disciplines, especially Mechanical Engineers. The aim of this module is to provide a foundation in Electrical Engineering and Electronics for students, of sufficient depth to be useful, and without being over complicated or cluttered with too-rigorous and exhaustive mathematical treatment.CoreEngineering Mechanics 2022-23EGR1016MLevel 42022-23The syllabus for this module can be divided into two topics: Statics and Mechanics: The primary aim of the study of engineering mechanics is to develop students' capacity to predict the effects of force and deformation in the course of carrying out the creative design function of engineering. As the student undertakes the study of solids and forces (first statics, mechanics, then dynamics) they can build a foundation of analytical capability for the solution of a great variety of engineering problems. Modern engineering practice demands a high level of analytical capability, and the study of mechanics can help in developing this. Dynamics: The study of dynamics gives students the opportunity to analyse and predict the motion of particles and bodies with and without reference to the forces that cause this motion. Successful prediction requires the ability of visualize physical configurations in terms of real machines ( in addition to knowledge of physical and mathematical principles of mechanics), actual constraints and the practical limitations which govern the behaviour of machines.CoreMaterials and Methods of Manufacture 2022-23EGR1004MLevel 42022-23The selection of materials and manufacturing method is an integral part of the engineering design procedure. The purpose of this module is to introduce the fundamental properties of engineering materials through an understanding of the atomic and molecular interactions within the material. Students are introduced to the technology of manufacturing processes and how the selection of manufacturing processes are influenced by, and subsequently affect, material properties.CoreMathematical Skills for Engineers 2022-23EGR1014MLevel 42022-23A good mathematical grounding is essential for all engineers. The theory developed in this module aims to underpin the other engineering modules studied at level one. Wherever possible, mathematical theory is taught by considering a real example, to present students the mathematical tools they might need for the science they follow. Solutions are considered by both analytical and numerical techniques. Where basic principles are involved, some proofs will also be taught.CoreThermofluids 2022-23EGR1017MLevel 42022-23The syllabus for this module can be divided into two topics: Thermodynamics: Thermodynamics is an essential part of engineering curricula all over the world. It is a basic science that deals with energy interactions in physical systems, and the purpose of this module is to study the relationships between heat (thermos) and work (dynamics). This module presents a range of real-world engineering applications to give students a feel for engineering practice and an intuitive understanding of the subject matter. Fluid Mechanics: Fluid Mechanics is the branch of applied mechanics that is concerned with the statics and dynamics of liquids and gases. The analysis of the behaviour of fluids is based upon the fundamental laws of applied mechanics, which relate to the conservation of mass-energy and the force-momentum equation. However, instead of dealing with the behaviour of individual bodies of known mass, Fluid Mechanics is concerned with the behaviour of a continuous stream of fluid. For this reason, Fluid Mechanics is studied separately to other mechanics modules. Due to the similarity of the mathematical techniques, Fluid Mechanics are studied with Thermodynamics.CoreAdvanced Thermofluids 2023-24EGR2005MLevel 52023-24Applied Thermodynamics: Thermodynamics is the science that deals with energy interactions in physical systems. The purpose of this module is to build upon the basic principles that were introduced in Thermofluid 1: Fundamental, and then apply this knowledge to real engineering problems. Heat Transfer: Almost every branch of science and engineering includes some kind of heat transfer problem, and there is a need for engineers to have some background in this area. The aim of this module is to provide an introduction to the basic principles and practical applications of conduction, convection and radiation heat transfer. The process of heat transfer is often accomplished by a flowing fluid, and so this module seeks to develop further the Fluid Mechanics covered in Thermofluids at level 1, in order that students can develop their understanding to the point that real world problems can be addressed.CoreApplied Dynamics and Vibrations 2023-24EGR2008MLevel 52023-24The aim of this module is to consolidate and build on the ideas and skills introduced in level one. Students have the opportunity to develop their ability to model dynamic systems with particular reference to vibration analysis in practical engineering applications.CoreControl Systems 2023-24EGR2006MLevel 52023-24The aim of this module is to provide students with a firm grounding in Classical Control methods, which will enable them to work with systems and control engineers, and prepare students on the control stream for advanced topics in the level three and four modules. Students will be introduced to Control in relation to engineering systems, and in particular to develop methods of modelling the control of processes. Techniques are explored with particular reference to common practical engineering problems and their solutions, and the application of SIMULINK in this process.CoreData Modelling and Simulation 2023-24EGR2010MLevel 52023-24The purpose of this programme of mathematical study is to give students the opportunity to become more competent in calculations using a range of mathematical tools. The content builds upon that delivered at Level 1, and gives students the opportunity to extend their analytical skills by introducing more advanced topics that may form part of the modern engineers skill set.CoreElectrical Power and Machines 2023-24ELE2004MLevel 52023-24Students will be introduced to electrical machines and power systems and their practical applications, supported by practical analysis/synthesis methods. This ability is fundamental for the students with mechanical engineering background, if they are to be able to handle electromechanical problems encountered in real life situations. Students will further have the opportunity to explore a general methodology for the calculation of electromechanical energy conversion. Students can obtain an appreciation of the features and characteristics of different types of electromechanical machines and drives and their applications.CoreIndustrial Engineering 2023-24EGR2011MLevel 52023-24This module aims to provide an introduction to the subject of industrial engineering. Industrial engineering is a branch of engineering dealing with the optimisation of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of integrated systems of people, economic resources, knowledge, information, equipment, energy, materials, analysis and synthesis, as well as the mathematical, physical and social sciences together with the principles and methods of engineering design to specify, predict, and evaluate the results to be obtained from such systems or processes. The various topics include management science, cost and value engineering, business economics and finance, engineering management, supply chain management, operations research, health and safety engineering, operation management.CoreInnovation Project 2023-24EGR2007MLevel 52023-24The content of this module aims to deepen a students understanding of engineering in practical applications. Students will have the opportunity to investigate the design process for mechanical, electrical or control components/systems and undertake analysis of the same. These two strands of the module are brought together in a design project, which will be set by a professional engineering organisation. This major project will give students the opportunity to extend their creative design skills and obtain practical experience of the process of creating sound conceptual solutions through to real design problems within an industrial context. Students can build confidence and gain experience through working within a team with practicing engineers from industry.CoreSolid Body Mechanics 2023-24EGR2012MLevel 52023-24This programme of study will extend the ideas and skills introduced at Level 1. Students have the opportunity to learn how to carry out strength and deflection analyses for a variety of simple load cases and structures. Students have the opportunity to understand the simplifications used in such analyses. This course demonstrates the role of stress analysis and failure prediction in the design environment.CoreAdvanced Manufacturing Processes and Systems 2024-25EGR3026MLevel 62024-25The selection of materials and manufacturing method is an integral part of the design and manufacturing procedure for producing parts and products. The purpose of this module is to provide students with the opportunity to learn how to select appropriate materials, processing methods and manufacturing systems to produce components and products, both existing and novel. The student is introduced to contemporary manufacturing processes and systems in an effort to select effective and efficient manufacturing processes and systems.CoreIndividual Project (Bachelors) 2024-25EGR3024MLevel 62024-25The individual project aims to provide students with a learning experience that enables them to carry out independent research, and to integrate many of the subjects they have studied throughout their degree. Students are expected to plan, research and execute their task while developing skills in critical judgement, independent work and engineering competence. Students have the opportunity to gain experience in presenting and reporting a major piece of engineering work, of immediate engineering value, at a level appropriate for an honours degree student.CoreMaterials Science and Engineering 2024-25EGR3025MLevel 62024-25The purpose of this module is to enable students to deepen their understanding of the key engineering materials with respect to material characteristics, their internal aspects, mechanical as well as the physical properties. This module aims to consolidate students' learning from other modules within the areas of engineering science, materials, manufacturing technology and manufacturing processes.CoreNew and Sustainable Product Design 2024-25EGR3001MLevel 62024-25The aim of this module is to give students the opportunity to experience a real engineering design situation as part of a group. Students have the opportunity to gain an understanding of strategic, operational, environmental and ethical issues related to new product design and development through a series of lectures covering an appreciation of market and societal dynamics and its effect on the design of new products. This module provides students with the opportunity to understand the tools and techniques available to facilitate sustainable product design and provide knowledge of the product design processes that can reduce environmental impacts and promote sustainable practices.CoreCombustion, Fuels and Energy 2024-25EGR3029MLevel 62024-25The aim of this module is to provide students with the opportunity to learn the background ito combustion theory. Students will be introduced to traditional and renewable fuels, their combustion and utilisation and the resulting environmental impacts. Combustion applications for energy production will be introduced along with the politics revolving around these energy applications. The module will also consider energy policy in terms of usage.OptionalComputational Fluid Dynamics 2024-25EGR3005MLevel 62024-25The purpose of this module is to introduce the full Navier-Stokes equations and give the physical significance of each term in the equations. Students are introduced to CFD techniques appropriate for practical engineering applications, (the finite volume method), and they have the opportunity to gain practical, hands-on experience of commercial CFD packages. This module offers students the opportunity to model industrial fluid dynamics and heat transfer problems.OptionalEnergy Systems and Conversion 2024-25EGR3030MLevel 62024-25The aim of this module is to provide students with an understanding of the machines used in power generation applications, with a main focus on the principles of operation of machines used in base load power generation (gas turbines), but all rotating machines in power generation are considered. Students may then develop a methodology for measuring the impact of machines from energy and materials usage, standpoints, and to better understand where opportunities exist to increase the efficiency of energy machines, systems and devices. Students will have the opportunity to build models of mass and energy flow through existing and proposed machines. These models are then used to pinpoint the most efficient and least efficient steps of device operation. This syllabus can be divided into two topics Fundamentals of Machines in Power and Energy: The module begins with the theory of gas turbines, based on fundamental thermodynamic and fluid mechanic analyses and introduces methods for improving efficiencies and increasing specific work outputs. Energy Systems Analysis: Students may strengthen and expand their fundamental knowledge of thermodynamics, and apply this to develop a better understanding of energy systems and machine systems.OptionalFinite Element Analysis 2024-25EGR3006MLevel 62024-25The purpose of this module is to introduce students to the theory and practice of the finite element method, with applications in stress analysis, heat transfer and general field problems in order to complement other modules in these subjects. Students have the opportunity to learn of the capabilities and limitations of the finite element method and the practical problems involved in successfully modelling engineering structures and components.OptionalInternet of Things and Smart Electronics 2024-25ELE3006MLevel 62024-25This module is intended to introduce the students into the fast growing area of Internet of Things (IoT) and consumer electronics design. It challenges students to design an IoT prototype product within a tightly constrained set of software tools and hardware components. The major objective is for students to develop proficiency with a contemporary programming language and use it to programme a state-of-the-art micro-controller to interface with sensors/actuators, a display, and IoT platforms, as required.OptionalRobotics and Automation 2024-25ELE3005MLevel 62024-25The aim of this module is to enable students to gain knowledge and understanding of the principles and other key elements in robotics, its interdisciplinary nature and its role and applications in automation. The module starts with the history and definition of robotics and its role in automation with examples. The module continues by studying a number of issues related to classifying, modelling and operating robots, followed by an important aspect of the robotics interdisciplinary nature i.e. its control and use of sensors and interpretation of sensory information as well as vision systems. Students will also have the opportunity to be introduced to the topics of networked operation and teleoperation, as well as robot programmingOptionalSignal Processing and System Identification 2024-25EGR3031MLevel 62024-25The aim of this module is to introduce students to theory and methodology of advanced techniques relevant to engineering systems, in order to design and implement filters and systems. System identification is a general term to describe mathematical tools and algorithms that build dynamic models from measured data. A dynamic model in this context is a mathematical description of the dynamic behaviour of a system or process in either the time or frequency domain. Students are given the opportunity to investigate methods by which they can perform useful operations on signals in either discrete or time-varying measurement.OptionalSmart Energy Systems 2024-25ELE3007MLevel 62024-25The purpose of this module is to analyse electrical machines, switched mode power-electronic convertors and design power systems for medium to high power applications. Students will have the opportunity to examine the operation characteristics and capabilities of commonly used systems and their control methods. In addition, students may examine the methods and issues surrounding transmission of electrical power, including insight and understanding of power system protection applications and the effects of system design on power quality.OptionalState-Space Control 2024-25EGR3032MLevel 62024-25In control engineering, a state-space representation is a mathematical model of a physical system as a set of input, output and state variables. Students have the opportunity to explore different methods of resolving the control variables in order to analyse systems in a compact and relevant way.Optional

† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

Computing and Programming for Engineers 2021-22EGR1013MLevel 42021-22Many sectors of engineering require high levels of computer literacy and the ability to write computer programs for problem solving is highly desirable. In learning the fundamentals of computer programming, logical thinking and problem solving, skills can be developed and coding techniques learnt, that can support the study of modules in forthcoming years. This course delivers the concepts of structured computer programming and lab time is allocated for implementing these concepts. Students are provided with opportunities to plan, write, and debug their own computer programs.CoreDesign Challenge for Engineers 2021-22EGR1022MLevel 42021-22All engineers must be familiar with design strategies, methods of assessing design proposals, approaches to reducing uncertainty, formal communication techniques and the industrial and legal standards in which they fit. Mechanical Engineering students will independently learn and demonstrate the fundamentals of mechanical technical drawing and computer aided design (CAD); Electrical Engineers will independently learn and demonstrate the fundamentals of electrical drawing and CAD. Electrical and Mechanical engineers will then coalesce to form interdisciplinary groups who will produce an electro-mechanical design solution which meets a practical objective and considers the commercial, economic, social and environmental implications via a broad critique of the state of the art.CoreElectrical and Electronic Technology 2021-22ELE1004MLevel 42021-22An understanding of the basic principles and many of the important practical applications of electronic and electrical engineering is now essential to practitioners of other disciplines, especially Mechanical Engineers. The aim of this module is to provide a foundation in Electrical Engineering and Electronics for students, of sufficient depth to be useful, and without being over complicated or cluttered with too-rigorous and exhaustive mathematical treatment.CoreEngineering Mechanics 2021-22EGR1016MLevel 42021-22The syllabus for this module can be divided into two topics: Statics and Mechanics: The primary aim of the study of engineering mechanics is to develop students' capacity to predict the effects of force and deformation in the course of carrying out the creative design function of engineering. As the student undertakes the study of solids and forces (first statics, mechanics, then dynamics) they can build a foundation of analytical capability for the solution of a great variety of engineering problems. Modern engineering practice demands a high level of analytical capability, and the study of mechanics can help in developing this. Dynamics: The study of dynamics gives students the opportunity to analyse and predict the motion of particles and bodies with and without reference to the forces that cause this motion. Successful prediction requires the ability of visualize physical configurations in terms of real machines ( in addition to knowledge of physical and mathematical principles of mechanics), actual constraints and the practical limitations which govern the behaviour of machines.CoreMaterials and Methods of Manufacture 2021-22EGR1004MLevel 42021-22The selection of materials and manufacturing method is an integral part of the engineering design procedure. The purpose of this module is to introduce the fundamental properties of engineering materials through an understanding of the atomic and molecular interactions within the material. Students are introduced to the technology of manufacturing processes and how the selection of manufacturing processes are influenced by, and subsequently affect, material properties.CoreMathematical Skills for Engineers 2021-22EGR1014MLevel 42021-22A good mathematical grounding is essential for all engineers. The theory developed in this module aims to underpin the other engineering modules studied at level one. Wherever possible, mathematical theory is taught by considering a real example, to present students the mathematical tools they might need for the science they follow. Solutions are considered by both analytical and numerical techniques. Where basic principles are involved, some proofs will also be taught.CoreThermofluids 2021-22EGR1017MLevel 42021-22The syllabus for this module can be divided into two topics: Thermodynamics: Thermodynamics is an essential part of engineering curricula all over the world. It is a basic science that deals with energy interactions in physical systems, and the purpose of this module is to study the relationships between heat (thermos) and work (dynamics). This module presents a range of real-world engineering applications to give students a feel for engineering practice and an intuitive understanding of the subject matter. Fluid Mechanics: Fluid Mechanics is the branch of applied mechanics that is concerned with the statics and dynamics of liquids and gases. The analysis of the behaviour of fluids is based upon the fundamental laws of applied mechanics, which relate to the conservation of mass-energy and the force-momentum equation. However, instead of dealing with the behaviour of individual bodies of known mass, Fluid Mechanics is concerned with the behaviour of a continuous stream of fluid. For this reason, Fluid Mechanics is studied separately to other mechanics modules. Due to the similarity of the mathematical techniques, Fluid Mechanics are studied with Thermodynamics.CoreAdvanced Thermofluids 2022-23EGR2005MLevel 52022-23Applied Thermodynamics: Thermodynamics is the science that deals with energy interactions in physical systems. The purpose of this module is to build upon the basic principles that were introduced in Thermofluid 1: Fundamental, and then apply this knowledge to real engineering problems. Heat Transfer: Almost every branch of science and engineering includes some kind of heat transfer problem, and there is a need for engineers to have some background in this area. The aim of this module is to provide an introduction to the basic principles and practical applications of conduction, convection and radiation heat transfer. The process of heat transfer is often accomplished by a flowing fluid, and so this module seeks to develop further the Fluid Mechanics covered in Thermofluids at level 1, in order that students can develop their understanding to the point that real world problems can be addressed.CoreApplied Dynamics and Vibrations 2022-23EGR2008MLevel 52022-23The aim of this module is to consolidate and build on the ideas and skills introduced in level one. Students have the opportunity to develop their ability to model dynamic systems with particular reference to vibration analysis in practical engineering applications.CoreControl Systems 2022-23EGR2006MLevel 52022-23The aim of this module is to provide students with a firm grounding in Classical Control methods, which will enable them to work with systems and control engineers, and prepare students on the control stream for advanced topics in the level three and four modules. Students will be introduced to Control in relation to engineering systems, and in particular to develop methods of modelling the control of processes. Techniques are explored with particular reference to common practical engineering problems and their solutions, and the application of SIMULINK in this process.CoreData Modelling and Simulation 2022-23EGR2010MLevel 52022-23The purpose of this programme of mathematical study is to give students the opportunity to become more competent in calculations using a range of mathematical tools. The content builds upon that delivered at Level 1, and gives students the opportunity to extend their analytical skills by introducing more advanced topics that may form part of the modern engineers skill set.CoreElectrical Power and Machines 2022-23ELE2004MLevel 52022-23Students will be introduced to electrical machines and power systems and their practical applications, supported by practical analysis/synthesis methods. This ability is fundamental for the students with mechanical engineering background, if they are to be able to handle electromechanical problems encountered in real life situations. Students will further have the opportunity to explore a general methodology for the calculation of electromechanical energy conversion. Students can obtain an appreciation of the features and characteristics of different types of electromechanical machines and drives and their applications.CoreIndustrial Engineering 2022-23EGR2011MLevel 52022-23This module aims to provide an introduction to the subject of industrial engineering. Industrial engineering is a branch of engineering dealing with the optimisation of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of integrated systems of people, economic resources, knowledge, information, equipment, energy, materials, analysis and synthesis, as well as the mathematical, physical and social sciences together with the principles and methods of engineering design to specify, predict, and evaluate the results to be obtained from such systems or processes. The various topics include management science, cost and value engineering, business economics and finance, engineering management, supply chain management, operations research, health and safety engineering, operation management.CoreInnovation Project 2022-23EGR2007MLevel 52022-23The content of this module aims to deepen a students understanding of engineering in practical applications. Students will have the opportunity to investigate the design process for mechanical, electrical or control components/systems and undertake analysis of the same. These two strands of the module are brought together in a design project, which will be set by a professional engineering organisation. This major project will give students the opportunity to extend their creative design skills and obtain practical experience of the process of creating sound conceptual solutions through to real design problems within an industrial context. Students can build confidence and gain experience through working within a team with practicing engineers from industry.CoreSolid Body Mechanics 2022-23EGR2012MLevel 52022-23This programme of study will extend the ideas and skills introduced at Level 1. Students have the opportunity to learn how to carry out strength and deflection analyses for a variety of simple load cases and structures. Students have the opportunity to understand the simplifications used in such analyses. This course demonstrates the role of stress analysis and failure prediction in the design environment.CoreAdvanced Manufacturing Processes and Systems 2023-24EGR3026MLevel 62023-24The selection of materials and manufacturing method is an integral part of the design and manufacturing procedure for producing parts and products. The purpose of this module is to provide students with the opportunity to learn how to select appropriate materials, processing methods and manufacturing systems to produce components and products, both existing and novel. The student is introduced to contemporary manufacturing processes and systems in an effort to select effective and efficient manufacturing processes and systems.CoreIndividual Project (Bachelors) 2023-24EGR3024MLevel 62023-24The individual project aims to provide students with a learning experience that enables them to carry out independent research, and to integrate many of the subjects they have studied throughout their degree. Students are expected to plan, research and execute their task while developing skills in critical judgement, independent work and engineering competence. Students have the opportunity to gain experience in presenting and reporting a major piece of engineering work, of immediate engineering value, at a level appropriate for an honours degree student.CoreMaterials Science and Engineering 2023-24EGR3025MLevel 62023-24The purpose of this module is to enable students to deepen their understanding of the key engineering materials with respect to material characteristics, their internal aspects, mechanical as well as the physical properties. This module aims to consolidate students' learning from other modules within the areas of engineering science, materials, manufacturing technology and manufacturing processes.CoreNew and Sustainable Product Design 2023-24EGR3001MLevel 62023-24The aim of this module is to give students the opportunity to experience a real engineering design situation as part of a group. Students have the opportunity to gain an understanding of strategic, operational, environmental and ethical issues related to new product design and development through a series of lectures covering an appreciation of market and societal dynamics and its effect on the design of new products. This module provides students with the opportunity to understand the tools and techniques available to facilitate sustainable product design and provide knowledge of the product design processes that can reduce environmental impacts and promote sustainable practices.CoreCombustion, Fuels and Energy 2023-24EGR3029MLevel 62023-24The aim of this module is to provide students with the opportunity to learn the background ito combustion theory. Students will be introduced to traditional and renewable fuels, their combustion and utilisation and the resulting environmental impacts. Combustion applications for energy production will be introduced along with the politics revolving around these energy applications. The module will also consider energy policy in terms of usage.OptionalComputational Fluid Dynamics 2023-24EGR3005MLevel 62023-24The purpose of this module is to introduce the full Navier-Stokes equations and give the physical significance of each term in the equations. Students are introduced to CFD techniques appropriate for practical engineering applications, (the finite volume method), and they have the opportunity to gain practical, hands-on experience of commercial CFD packages. This module offers students the opportunity to model industrial fluid dynamics and heat transfer problems.OptionalEnergy Systems and Conversion 2023-24EGR3030MLevel 62023-24The aim of this module is to provide students with an understanding of the machines used in power generation applications, with a main focus on the principles of operation of machines used in base load power generation (gas turbines), but all rotating machines in power generation are considered. Students may then develop a methodology for measuring the impact of machines from energy and materials usage, standpoints, and to better understand where opportunities exist to increase the efficiency of energy machines, systems and devices. Students will have the opportunity to build models of mass and energy flow through existing and proposed machines. These models are then used to pinpoint the most efficient and least efficient steps of device operation. This syllabus can be divided into two topics Fundamentals of Machines in Power and Energy: The module begins with the theory of gas turbines, based on fundamental thermodynamic and fluid mechanic analyses and introduces methods for improving efficiencies and increasing specific work outputs. Energy Systems Analysis: Students may strengthen and expand their fundamental knowledge of thermodynamics, and apply this to develop a better understanding of energy systems and machine systems.OptionalFinite Element Analysis 2023-24EGR3006MLevel 62023-24The purpose of this module is to introduce students to the theory and practice of the finite element method, with applications in stress analysis, heat transfer and general field problems in order to complement other modules in these subjects. Students have the opportunity to learn of the capabilities and limitations of the finite element method and the practical problems involved in successfully modelling engineering structures and components.OptionalInternet of Things and Smart Electronics 2023-24ELE3006MLevel 62023-24This module is intended to introduce the students into the fast growing area of Internet of Things (IoT) and consumer electronics design. It challenges students to design an IoT prototype product within a tightly constrained set of software tools and hardware components. The major objective is for students to develop proficiency with a contemporary programming language and use it to programme a state-of-the-art micro-controller to interface with sensors/actuators, a display, and IoT platforms, as required.OptionalRobotics and Automation 2023-24ELE3005MLevel 62023-24The aim of this module is to enable students to gain knowledge and understanding of the principles and other key elements in robotics, its interdisciplinary nature and its role and applications in automation. The module starts with the history and definition of robotics and its role in automation with examples. The module continues by studying a number of issues related to classifying, modelling and operating robots, followed by an important aspect of the robotics interdisciplinary nature i.e. its control and use of sensors and interpretation of sensory information as well as vision systems. Students will also have the opportunity to be introduced to the topics of networked operation and teleoperation, as well as robot programmingOptionalSignal Processing and System Identification 2023-24EGR3031MLevel 62023-24The aim of this module is to introduce students to theory and methodology of advanced techniques relevant to engineering systems, in order to design and implement filters and systems. System identification is a general term to describe mathematical tools and algorithms that build dynamic models from measured data. A dynamic model in this context is a mathematical description of the dynamic behaviour of a system or process in either the time or frequency domain. Students are given the opportunity to investigate methods by which they can perform useful operations on signals in either discrete or time-varying measurement.OptionalSmart Energy Systems 2023-24ELE3007MLevel 62023-24The purpose of this module is to analyse electrical machines, switched mode power-electronic convertors and design power systems for medium to high power applications. Students will have the opportunity to examine the operation characteristics and capabilities of commonly used systems and their control methods. In addition, students may examine the methods and issues surrounding transmission of electrical power, including insight and understanding of power system protection applications and the effects of system design on power quality.OptionalState-Space Control 2023-24EGR3032MLevel 62023-24In control engineering, a state-space representation is a mathematical model of a physical system as a set of input, output and state variables. Students have the opportunity to explore different methods of resolving the control variables in order to analyse systems in a compact and relevant way.Optional

How you are assessed

Assessment on the programme is designed to measure and assess engineering technical and analytical skills as well as professional soft skills including oral and written communication, team working, long-life learning, problem-solving, project management, and planning and organisation.

In addition to traditional exams, coursework assignments are used in a number of modules where students are required to work on their own or in small groups. They are designed to enable students to develop and show their understanding of the module content. Oral presentations are often included as part of coursework to provide opportunities for developing essential communication skills.

Students are expected to complete an individual project in their final year of the degree course, providing an excellent opportunity to pull together every aspect of their development during the course.

Assessment on the programme is designed to measure and assess engineering technical and analytical skills as well as professional soft skills including oral and written communication, team working, long-life learning, problem-solving, project management, and planning and organisation.

In addition to traditional exams, coursework assignments are used in a number of modules where students are required to work on their own or in small groups. They are designed to enable students to develop and show their understanding of the module content. Oral presentations are often included as part of coursework to provide opportunities for developing essential communication skills.

Students are expected to complete an individual project in their final year of the degree course, providing an excellent opportunity to pull together every aspect of their development during the course.

Special Features

Our academic team brings together a rich array of research experience, including staff with specialisms in diagnostics and prognostics, renewables, modelling of dynamic systems, nanomaterials, and applications of lasers. They secure grants for major UK and European research funders and deliver research, development, and consultancy for industrial partners, as well as being part of international research collaborations. Students have the opportunity to engage in this research through research-led teaching and project work.

The School of Engineering’s award-winning collaboration with industry delivers numerous benefits for students, including a number of internship opportunities at Siemens. Our collaboration with Siemens has won a prestigious Lord Stafford Award and a Times Higher Education Award.

Placements

A sandwich option is available on the programme, providing students with the opportunity to spend a year in industry. Students are encouraged to obtain placements in industry independently. Tutors may provide support and advice to students who require it during this process. Students undertaking placements are responsible for their own travel, living, and accommodation costs.

Fees and Scholarships

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. The University of Lincoln offers a variety of merit-based and subject-specific bursaries and scholarships. For full details and information about eligibility, visit our scholarships and bursaries pages.

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. The University of Lincoln offers a variety of merit-based and subject-specific bursaries and scholarships. For full details and information about eligibility, visit our scholarships and bursaries pages.

Entry Requirements 2022-23

United Kingdom

GCE Advanced Levels: BBC, to include a grade B in Maths.

International Baccalaureate: 29 points overall to include Higher Level grade 5 in Maths

BTEC Extended Diploma in Engineering: Distinction, Merit, Merit.

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 112 UCAS Tariff points, including 40 points from 15 credits in Maths

Applicants will also need at least three GCSEs at grade 4 (C) or above, which must include English and Maths. Equivalent Level 2 qualifications may also be considered.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

For applicants who do not meet our standard entry requirements, our Science Foundation Year can provide an alternative route of entry onto our full degree programmes:
https://www.lincoln.ac.uk/home/course/sfysfyub/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Entry Requirements 2021-22

United Kingdom

GCE Advanced Levels: BBC, to include a grade B in Maths.

International Baccalaureate: 29 points overall to include Higher Level grade 5 in Maths

BTEC Extended Diploma in Engineering: Distinction, Merit, Merit.

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 112 UCAS Tariff points, including 40 points from 15 credits in Maths

Applicants will also need at least three GCSEs at grade 4 (C) or above, which must include English and Maths. Equivalent Level 2 qualifications may also be considered.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

For applicants who do not meet our standard entry requirements, our Science Foundation Year can provide an alternative route of entry onto our full degree programmes:
https://www.lincoln.ac.uk/home/course/sfysfyub/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Accreditations and Memberships

This programme is accredited by the Institution of Mechanical Engineers (IMechE) for the intake in 2020 and will shortly be going through the process of re-accreditation for the intakes of 2021 onwards.

"University was a key stepping stone in doing the job I really enjoy. It allowed me to become highly skilled in the engineering domain whilst building my network and finding the niche of engineering that I wanted to work in."

Jan van der Lubbe, Software Implementation Engineer, eQ Technologic

Career Opportunities

Professional engineers are in demand in the UK and overseas. Graduates may pursue a variety of career paths in areas such as control systems, power and energy, and mechanical and materials engineering.

The University’s status as a Siemens Global Principal Partner gives Lincoln graduates enhanced opportunities for placements, mentoring and recruitment at Siemens. Other graduate destinations include Rolls-Royce, Qinetiq, JCB, and Jaguar Landrover.

Visit Us in Person

The best way to find out what it is really like to live and learn at Lincoln is to join us for one of our Open Days. Visiting us in person is important and will help you to get a real feel for what it might be like to study here.

Book Your Place

Related Courses

The University intends to provide its courses as outlined in these pages, although the University may make changes in accordance with the Student Admissions Terms and Conditions.
-->