Key Information

Full-time

3-4 years

Typical Offer

BBB (120 UCAS Tariff points from 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

VG51

Course Code

MTHPHLUB

Key Information

Full-time

3-4 years

Typical Offer

BBC (112 UCAS Tariff points from 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

VG51

Course Code

MTHPHLUB

BSc (Hons) Mathematics with Philosophy BSc (Hons) Mathematics with Philosophy

Mathematics at Lincoln is ranked in the top 10 in the UK for overall student satisfaction according to the National Student Survey 2020 (out of 68 ranking institutions).

Key Information

Full-time

3-4 years

Typical Offer

BBB (120 UCAS Tariff points from 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

VG51

Course Code

MTHPHLUB

Key Information

Full-time

3-4 years

Typical Offer

BBC (112 UCAS Tariff points from 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

VG51

Course Code

MTHPHLUB

Teaching and Learning During COVID-19

The current COVID-19 pandemic has meant that at Lincoln we are making changes to our teaching and learning approach and to our campus, to ensure that students and staff can enjoy a safe and positive learning experience here at Lincoln.

From autumn 2020 our aim is to provide an on-campus learning experience. Our intention is that teaching will be delivered through a mixture of face-to-face and online sessions. There will be social activities in place for students - all in line with appropriate social distancing and fully adhering to any changes in government guidance as our students' safety is our primary concern.

We want to ensure that your Lincoln experience is as positive, exciting and enjoyable as possible as you embark on the next phase of your life. COVID-19 has encouraged us to review our practices and, as a result, to take the opportunity to find new ways to enhance the Lincoln experience. It has challenged us to find innovative new approaches to supporting students' learning and social interactions. These learning experiences, which blend digital and face-to-face, will be vital in helping to prepare our students for a 21st Century workplace.

Of course at Lincoln, personal tutoring is key to our delivery, providing every student with a dedicated tutor to support them throughout their time here at the University. Smaller class sizes mean our academic staff can engage with each student as an individual, and work with them to enhance their strengths. In this environment we hope that students have more opportunities for discussion and engagement and get to know each other better.

Course learning outcomes are vital to prepare you for your future and we aim to utilise this mix of face-to-face and online teaching to deliver these. Students benefit from and enjoy fieldtrips and placements and, whilst it is currently hard to predict the availability of these, we are working hard and with partners and will aspire to offer these wherever possible - obviously in compliance with whatever government guidance is in place at the time.

We are utilising a range of different digital tools for teaching including our dedicated online managed learning environment. All lectures for larger groups will be delivered online using interactive software and a range of different formats. We aim to make every contact count and seminars and small group sessions will maximise face-to-face interaction. Practicals, workshops, studio sessions and performance-based sessions are planned to be delivered face-to-face, in a socially distanced way with appropriate PPE.

The University of Lincoln is a top 20 TEF Gold University and we have won awards for our approach to teaching and learning, our partnerships and industry links, and the opportunities these provide for our students. Our aim is that our online and socially distanced delivery during this COVID-19 pandemic is engaging and that students can interact with their tutors and each other and contribute to our academic community.

As and when restrictions start to lift, we aim to deliver an increasing amount of face-to-face teaching and external engagements, depending on each course. Safety will continue to be our primary focus and we will respond to any changing circumstances as they arise to ensure our community is supported. More information about the specific approaches for each course will be shared when teaching starts.

Of course as you start a new academic year it will be challenging but we will be working with you every step of the way. For all our students new and established, we look forward to welcoming you to our vibrant community this Autumn. If you have any questions please visit our FAQs or contact us on 01522 886644.

Dr Fabien Paillusson - Programme Leader

Dr Fabien Paillusson - Programme Leader

Dr Fabien Paillusson's interests lie in theoretical and computational modelling, the foundations of physics, physics and maths education, AI (Machine Learning and Automated Reasoning), logic, and the philosophy of science.

School Staff List

Welcome to BSc (Hons) Mathematics with Philosophy

This joint programme combines a foundation of pure and applied mathematics with the study of Philosophy, reflecting the complementary nature of these two disciplines to help explain our world and our place in it.

Mathematics with Philosophy at Lincoln combines two of the most fundamental and widely applicable intellectual skills. The course aims to provide students with the knowledge and ability to tackle quantifiable problems and to analyse issues and question assumptions. This enables them to develop their understanding of logic and reasoning.

Students have the opportunity to learn from, and work alongside, our team of academics who can support and encourage them to apply imagination, creativity, and rigour to the solution of real-world problems. Individual and group projects during the course are designed to develop transferable skills.

Welcome to BSc (Hons) Mathematics with Philosophy

This joint programme combines a foundation of pure and applied mathematics with the study of Philosophy, reflecting the complementary nature of these two disciplines to help explain our world and our place in it.

Mathematics with Philosophy at Lincoln combines two of the most fundamental and widely applicable intellectual skills. The course aims to provide students with the knowledge and ability to tackle quantifiable problems and to analyse issues and question assumptions. This enables them to develop their understanding of logic and reasoning.

Students have the opportunity to learn from, and work alongside, our team of academics who can support and encourage them to apply imagination, creativity, and rigour to the solution of real-world problems. Individual and group projects during the course are designed to develop transferable skills.

How You Study

Students can focus on numerical and analytical methods of mathematics, while developing a range of transferable skills, including logical reasoning, critical thinking, communication, and teamwork. This combination is intended to help students to develop the skills to tackle a variety of topics from different angles. It seeks to help students find answers and to evaluate the questions and reasoning behind them.

In the first year topics include algebra, calculus, ideas of mathematical proof, and an introduction to philosophical logic. In the second year students progress to differential equations, scientific computing, and the philosophy of science. The third year provides the opportunity for students to select from a range of optional modules to tailor the degree to their own interests.

The course is taught via lectures, problem solving classes, computer-based classes, and seminars.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. To help you choose the course that’s right for you, we aim to bring to your attention all the important information you may need. Our What You Need to Know page offers detailed information on key areas including contact hours, assessment, optional modules, and additional costs.

Find out More

How You Study

Students can focus on numerical and analytical methods of mathematics, while developing a range of transferable skills, including logical reasoning, critical thinking, communication, and teamwork. This combination is intended to help students to develop the skills to tackle a variety of topics from different angles. It seeks to help students find answers and to evaluate the questions and reasoning behind them.

In the first year topics include algebra, calculus, ideas of mathematical proof, and an introduction to philosophical logic. In the second year students progress to differential equations, scientific computing, and the philosophy of science. The third year provides the opportunity for students to select from a range of optional modules to tailor the degree to their own interests.

The course is taught via lectures, problem solving classes, computer-based classes, and seminars.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. To help you choose the course that’s right for you, we aim to bring to your attention all the important information you may need. Our What You Need to Know page offers detailed information on key areas including contact hours, assessment, optional modules, and additional costs.

Find out More

An Introduction to Your Modules

Module Overview

This module begins with refreshing and expanding some of the material from the A-levels Maths, such as the binomial theorem, division of polynomials, polynomial root-finding, and factorisations. Then the Euclidean algorithm is introduced with some of its many applications, both for integers and for polynomials. This naturally leads to a discussion of divisibility and congruences, for integers and for polynomials, with emphasis on similarities and as a step towards abstraction.

Module Overview

This module focuses on the concepts of the derivative and the Riemann integral, which are indispensable in modern sciences. Two approaches are used: both intuitive-geometric, and mathematically rigorous, based on the definition of continuous limits. Important results are the Mean Value Theorem, leading to the representation of some functions as power series (the Taylor series), and the Fundamental Theorem of Calculus which establishes the relationship between differentiation and integration. Further calculus tools are explored, such as the general properties of the derivative and the Riemann integral, as well as the techniques of integration. In this module, students may deal with many "popular" functions used throughout mathematics.

Module Overview

This module will present an introduction to the fundamentals of waves, geometrical optics and mechanics, including their mathematical foundations.

Module Overview

The purpose of this module is to introduce students to basic mathematical reasoning such as rigorous definitions and proofs, logical structure of mathematical statements. Students will have the opportunity to learn the set-theoretic notation, get acquainted with various strategies of mathematical proofs such as proof by mathematical induction or proof by contradiction. Rigorous definitions of limits of sequences and functions will form a foundation for other courses on calculus and differential equations. The importance of definitions and proofs will be illustrated by examples of "theorems" which may seem obvious but are actually false, as well as certain mathematical "paradoxes".

Module Overview

This module is designed to introduce students to the three areas of discussion in contemporary moral philosophy. Metaethics is concerned with the nature of morality itself and questions such as ‘Are there moral facts?’, ‘If there are moral facts, what is their origin?’. Normative ethics is the attempt to provide a general theory that tells us how to live and enables us to determine what is morally right and wrong. Applied ethics involves the application of ethical principles to specific moral issues (e.g., abortion, euthanasia, animal rights) and the evaluation of the answers arrived at through this application. This module aims to introduce students to all three of these branches of ethics.

Module Overview

This module introduces some of the basic ideas and concepts of philosophical logic and the technical vocabulary that is required for understanding contemporary philosophical writing. Students are introduced to logical concepts such as validity, soundness, consistency, possibility, necessity, contingency, inductive and deductive forms of argument, necessary and sufficient conditions, the rudiments of formalisation, and a range of logical fallacies. The emphasis will be on using logic to construct and evaluate arguments.

Module Overview

This module describes vector spaces and matrices. Matrices are regarded as representations of linear mappings between vector spaces. Eigenvalues and eigenvectors are introduced, which lead to diagonalization and reduction to other canonical forms. Special types of mappings and matrices (orthogonal, symmetric) are introduced. Applications of linear algebra to geometry of quadratic surfaces are explored.

Module Overview

This module begins with an introduction of a probability space, which models the possible outcomes of a random experiment. Basic concepts such as statistical independence and conditional probability are introduced, with various practical examples used as illustrations. Random variables are introduced, and certain well-known probability distributions are explored. Further study includes discrete distributions, independence of random variables, mathematical expectation, random vectors, covariance and correlation, conditional distributions and the law of total expectation. The ideas developed for discrete distributions are applied to continuous distributions. Probability theory is a basis of mathematical statistics, which has so many important applications in science, industry, government and commerce. Students will have the opportunity to gain a basic understanding of statistics and its tools. It is important that these tools are used correctly when, for example, the full picture of a problem (population) must be inferred from collected data (random sample).

Module Overview

The concepts of groups, rings and fields are introduced, as examples of arbitrary algebraic systems. The basic theory of subgroups of a given group and the construction of factor groups is introduced, and then similar constructions are introduced for rings. Examples of rings are considered, including the integers modulo n, the complex numbers and n-by-n matrices. The ring of polynomials over a given field is studied in more detail.

Module Overview

Transmission of data may mean sending pictures from the Mars rover, streaming live music or videos, speaking on the phone, answering someone's question “do you love me?”. Problems arise if there are chances of errors creeping in, which may be catastrophic (say, receiving “N” instead of “Y”). Coding theory provides error-correcting codes, which are designed in such a way that errors that occur can be detected and corrected (within certain limits) based on the remaining symbols. The problem is balancing reliability with cost and/or slowing the transmission. Students will have the opportunity to study various types of error-correcting codes, such as linear codes, hamming codes, perfect codes, etc., some of which are algebraic and some correspond to geometrical patterns.

Module Overview

Ideas of calculus of derivatives and integrals are extended to complex functions of a complex variable. Students will learn that complex differentiability is a very strong condition and differentiable functions behave very well. Integration along paths in the complex plane is introduced. One of the main results of this beautiful part of mathematics is Cauchy's Theorem that states that certain integrals along closed paths are equal to zero. This gives rise to useful techniques for evaluating real integrals based on the 'calculus of residues'.

Module Overview

Calculus techniques already provide solutions of simple first-order differential equations. Solution of second-order differential equations can sometimes be achieved by certain manipulations. Students may learn about existence and geometric interpretations of solutions, even when calculus techniques do not yield solutions in a simple form. This is a part of the existence theory of ordinary differential equations and leads to fundamental techniques of the asymptotic and qualitative study of their solutions, including the important question of stability. Fourier series and Fourier transform are introduced. This module provides an introduction to the classical second-order linear partial differential equations and techniques for their solution. The basic concepts and methods are introduced for typical partial differential equations representing the three classes: parabolic, elliptic, and hyperbolic.

Module Overview

The aim of this module is to give students a thorough understanding of two intimately related philosophical traditions that came to prominence in the 19th and 20th centuries: existentialism and phenomenology. Each attempts to address the nature and meaning of human existence from the perspective of individual, first-person experience, focusing in particular on fundamental questions of being, meaning, death, nihilism, freedom, responsibility, value, human relations, and religious faith. The module will examine selected existential themes through the writings of thinkers such as Kierkegaard, Nietzsche, Heidegger, Sartre, De Beauvoir, and Camus. Since existentialism is as much a artistic phenomenon as a philosophical one, students will also be given the opportunity to explore existentialist ideas in the works of various literary figures, such as Shakespeare, Dostoyevsky, Kafka, and Milan Kundera.

Module Overview

Students have the opportunity to learn how mathematics is applied to modern industrial problems, and how the mathematical apparatus finds applications in the financial sector.

Module Overview

This module explores a range of philosophical questions relating to the nature of science. How are scientific theories developed? Are scientific theories discovered through a ‘flash of genius’ or is something more methodical involved? How much of scientific discovery is down to careful observation? Do scientific theories tell us how the world really is? Do the entities scientific theories postulate – atoms, electromagnetic waves, and so on – really exist? Or are scientific theories merely useful models of reality? Is science independent of its social context? To what extent is scientific inquiry affected by gender, race or politics? Is there such a thing as truth that is not relative to a particular culture, social class or historical era? Drawing on accessible examples from a variety of scientific fields and by answering these and related questions, we shall try to reach an understanding of how science works.

Module Overview

Students will have the opportunity to utilise computers for the numerical solution and simulation of models of physical and mathematical systems, including the use of computer procedural programming languages to solve computational problems. Numerical algorithms will be introduced to exemplify key concepts in computational programming, with the emphasis on understanding the nature of the algorithm and the features and limitations of its computational implementation. In creating programs, the emphasis will be on using effective programming techniques and on efficient debugging, testing and validation methods. Students may also develop skills at using a logbook as a factual record and as reflective self-assessment to support their learning.

Module Overview

This module gives students the opportunity to engage with some key issues and contemporary debates in key areas of philosophy, such as epistemological relativism, the nature of consciousness, the nature of causation in science, the nature of the self. The precise topics addressed will vary from year to year and students will have input into the choice of topics. The aim of the module is to explore in-depth some significant contemporary philosophical issues and to enable students to develop and enhance their key philosophical and debating skills.

Module Overview

Symmetry, understood in most broad sense as invariants under transformations, permeates all parts of mathematics, as well as natural sciences. Groups are measures of such symmetry and therefore are used throughout mathematics. Abstract group theory studies the intrinsic structure of groups. The course begins with definitions of subgroups, normal subgroups, and group actions in various guises. Group homomorphisms are introduced and the related isomorphism theorems are proved. Sylow p-subgroups are introduced and the three Sylow theorems are proved. Throughout, symmetry groups are used as examples.

Module Overview

This is a double module in which a student undertakes a project under supervision of a research-active member of staff. The project can be undertaken at an external collaborating establishment. Projects will be offered to students in a wide range of subjects, assigned with consideration of a students' individual preferences and programme of their studies. Some projects will be more focused on a detailed study of mathematical theories or techniques in an area of current interest. Other projects may require solving specific problems that require the formulation of a mathematical model, its development and solution. Student meet regularly with their supervisor in order to receive guidance and review progress.

Module Overview

This module introduces tensors, which are abstract objects describing linear relations between vectors, scalars, and other tensors. The module aims to equip students with the knowledge of tensor manipulation, and introduces their applications in modern science.

Module Overview

This module gives a mathematical foundation of ideal and viscous fluid dynamics and their application to describing various flows in nature and technology. Students are taught methods of analysing and solving equations of fluid dynamics using analytic and most modern computational tools.

Module Overview

This module is designed to provide students with an insight into the teaching of Mathematics at secondary school level and does this by combining university lectures with an experience of a placement in a secondary school Mathematics department. The module aims to provide students with an opportunity to engage with cutting-edge maths education research and will examine how this research impacts directly on classroom practice. Students will have the opportunity to gain an insight into some of the key ideas in Mathematics pedagogy and how these are implemented in the school Mathematics lessons and will develop an understanding about the barriers to learning Mathematics that many students experience.

Module Overview

The module aims to equip students with methods to analyse and solve various mathematical equations found in physics and technology.

Module Overview

This module examines some of the philosophical issues raised by the Newtonian revolution in the natural sciences, such as: What is the nature of Newton’s distinction between ‘absolute’ and ‘relative’ space? In what sense can forces be said to exist? What is the ontology of force? Is it sufficient to provide a mathematical definition of force (e.g., f=ma)? Is gravity a special kind of force with its own unique set of properties? What is the nature of ‘action at a distance’? Is Newton’s view of space metaphysical? This is an interdisciplinary module that situates Newtonian science in its sociocultural context.

Module Overview

The module aims to equip students with knowledge of various numerical methods for solving applied mathematics problems, their algorithms and implementation in programming languages.

† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

An Introduction to Your Modules

Module Overview

This module begins with refreshing and expanding some of the material from the A-levels Maths, such as the binomial theorem, division of polynomials, polynomial root-finding, and factorisations. Then the Euclidean algorithm is introduced with some of its many applications, both for integers and for polynomials. This naturally leads to a discussion of divisibility and congruences, for integers and for polynomials, with emphasis on similarities and as a step towards abstraction.

Module Overview

This module focuses on the concepts of the derivative and the Riemann integral, which are indispensable in modern sciences. Two approaches are used: both intuitive-geometric, and mathematically rigorous, based on the definition of continuous limits. Important results are the Mean Value Theorem, leading to the representation of some functions as power series (the Taylor series), and the Fundamental Theorem of Calculus which establishes the relationship between differentiation and integration. Further calculus tools are explored, such as the general properties of the derivative and the Riemann integral, as well as the techniques of integration. In this module, students may deal with many "popular" functions used throughout mathematics.

Module Overview

This module will present an introduction to the fundamentals of waves, geometrical optics and mechanics, including their mathematical foundations.

Module Overview

The purpose of this module is to introduce students to basic mathematical reasoning such as rigorous definitions and proofs, logical structure of mathematical statements. Students will have the opportunity to learn the set-theoretic notation, get acquainted with various strategies of mathematical proofs such as proof by mathematical induction or proof by contradiction. Rigorous definitions of limits of sequences and functions will form a foundation for other courses on calculus and differential equations. The importance of definitions and proofs will be illustrated by examples of "theorems" which may seem obvious but are actually false, as well as certain mathematical "paradoxes".

Module Overview

This module is designed to introduce students to the three areas of discussion in contemporary moral philosophy. Metaethics is concerned with the nature of morality itself and questions such as ‘Are there moral facts?’, ‘If there are moral facts, what is their origin?’. Normative ethics is the attempt to provide a general theory that tells us how to live and enables us to determine what is morally right and wrong. Applied ethics involves the application of ethical principles to specific moral issues (e.g., abortion, euthanasia, animal rights) and the evaluation of the answers arrived at through this application. This module aims to introduce students to all three of these branches of ethics.

Module Overview

This module introduces some of the basic ideas and concepts of philosophical logic and the technical vocabulary that is required for understanding contemporary philosophical writing. Students are introduced to logical concepts such as validity, soundness, consistency, possibility, necessity, contingency, inductive and deductive forms of argument, necessary and sufficient conditions, the rudiments of formalisation, and a range of logical fallacies. The emphasis will be on using logic to construct and evaluate arguments.

Module Overview

This module describes vector spaces and matrices. Matrices are regarded as representations of linear mappings between vector spaces. Eigenvalues and eigenvectors are introduced, which lead to diagonalisation and reduction to other canonical forms. Special types of mappings and matrices (orthogonal, symmetric) are also introduced.

Module Overview

This module begins with an introduction of a probability space, which models the possible outcomes of a random experiment. Basic concepts such as statistical independence and conditional probability are introduced, with various practical examples used as illustrations. Random variables are introduced, and certain well-known probability distributions are explored. Further study includes discrete distributions, independence of random variables, mathematical expectation, random vectors, covariance and correlation, conditional distributions and the law of total expectation. The ideas developed for discrete distributions are applied to continuous distributions. Probability theory is a basis of mathematical statistics, which has so many important applications in science, industry, government and commerce. Students will have the opportunity to gain a basic understanding of statistics and its tools. It is important that these tools are used correctly when, for example, the full picture of a problem (population) must be inferred from collected data (random sample).

Module Overview

The concepts of groups, rings and fields are introduced, as examples of arbitrary algebraic systems. The basic theory of subgroups of a given group and the construction of factor groups is introduced, and then similar constructions are introduced for rings. Examples of rings are considered, including the integers modulo n, the complex numbers and n-by-n matrices. The ring of polynomials over a given field is studied in more detail.

Module Overview

Transmission of data may mean sending pictures from the Mars rover, streaming live music or videos, speaking on the phone, answering someone's question “do you love me?”. Problems arise if there are chances of errors creeping in, which may be catastrophic (say, receiving “N” instead of “Y”). Coding theory provides error-correcting codes, which are designed in such a way that errors that occur can be detected and corrected (within certain limits) based on the remaining symbols. The problem is balancing reliability with cost and/or slowing the transmission. Students will have the opportunity to study various types of error-correcting codes, such as linear codes, hamming codes, perfect codes, etc., some of which are algebraic and some correspond to geometrical patterns.

Module Overview

Ideas of calculus of derivatives and integrals are extended to complex functions of a complex variable. Students will learn that complex differentiability is a very strong condition and differentiable functions behave very well. Integration along paths in the complex plane is introduced. One of the main results of this beautiful part of mathematics is Cauchy's Theorem that states that certain integrals along closed paths are equal to zero. This gives rise to useful techniques for evaluating real integrals based on the 'calculus of residues'.

Module Overview

Calculus techniques already provide solutions of simple first-order differential equations. Solution of second-order differential equations can sometimes be achieved by certain manipulations. Students may learn about existence and geometric interpretations of solutions, even when calculus techniques do not yield solutions in a simple form. This is a part of the existence theory of ordinary differential equations and leads to fundamental techniques of the asymptotic and qualitative study of their solutions, including the important question of stability. Fourier series and Fourier transform are introduced. This module provides an introduction to the classical second-order linear partial differential equations and techniques for their solution. The basic concepts and methods are introduced for typical partial differential equations representing the three classes: parabolic, elliptic, and hyperbolic.

Module Overview

The aim of this module is to give students a thorough understanding of two intimately related philosophical traditions that came to prominence in the 19th and 20th centuries: existentialism and phenomenology. Each attempts to address the nature and meaning of human existence from the perspective of individual, first-person experience, focusing in particular on fundamental questions of being, meaning, death, nihilism, freedom, responsibility, value, human relations, and religious faith. The module will examine selected existential themes through the writings of thinkers such as Kierkegaard, Nietzsche, Heidegger, Sartre, De Beauvoir, and Camus. Since existentialism is as much a artistic phenomenon as a philosophical one, students will also be given the opportunity to explore existentialist ideas in the works of various literary figures, such as Shakespeare, Dostoyevsky, Kafka, and Milan Kundera.

Module Overview

Students have the opportunity to learn how mathematics is applied to modern industrial problems, and how the mathematical apparatus finds applications in the financial sector.

Module Overview

This module explores a range of philosophical questions relating to the nature of science. How are scientific theories developed? Are scientific theories discovered through a ‘flash of genius’ or is something more methodical involved? How much of scientific discovery is down to careful observation? Do scientific theories tell us how the world really is? Do the entities scientific theories postulate – atoms, electromagnetic waves, and so on – really exist? Or are scientific theories merely useful models of reality? Is science independent of its social context? To what extent is scientific inquiry affected by gender, race or politics? Is there such a thing as truth that is not relative to a particular culture, social class or historical era? Drawing on accessible examples from a variety of scientific fields and by answering these and related questions, we shall try to reach an understanding of how science works.

Module Overview

Students will have the opportunity to utilise computers for the numerical solution and simulation of models of physical and mathematical systems, including the use of computer procedural programming languages to solve computational problems. Numerical algorithms will be introduced to exemplify key concepts in computational programming, with the emphasis on understanding the nature of the algorithm and the features and limitations of its computational implementation. In creating programs, the emphasis will be on using effective programming techniques and on efficient debugging, testing and validation methods. Students may also develop skills at using a logbook as a factual record and as reflective self-assessment to support their learning.

Module Overview

This module gives students the opportunity to engage with some key issues and contemporary debates in key areas of philosophy, such as epistemological relativism, the nature of consciousness, the nature of causation in science, the nature of the self. The precise topics addressed will vary from year to year and students will have input into the choice of topics. The aim of the module is to explore in-depth some significant contemporary philosophical issues and to enable students to develop and enhance their key philosophical and debating skills.

Module Overview

Symmetry, understood in most broad sense as invariants under transformations, permeates all parts of mathematics, as well as natural sciences. Groups are measures of such symmetry and therefore are used throughout mathematics. Abstract group theory studies the intrinsic structure of groups. The course begins with definitions of subgroups, normal subgroups, and group actions in various guises. Group homomorphisms are introduced and the related isomorphism theorems are proved. Sylow p-subgroups are introduced and the three Sylow theorems are proved. Throughout, symmetry groups are used as examples.

Module Overview

This is a double module in which a student undertakes a project under supervision of a research-active member of staff. The project can be undertaken at an external collaborating establishment. Projects will be offered to students in a wide range of subjects, assigned with consideration of a students' individual preferences and programme of their studies. Some projects will be more focused on a detailed study of mathematical theories or techniques in an area of current interest. Other projects may require solving specific problems that require the formulation of a mathematical model, its development and solution. Student meet regularly with their supervisor in order to receive guidance and review progress.

Module Overview

This module introduces tensors, which are abstract objects describing linear relations between vectors, scalars, and other tensors. The module aims to equip students with the knowledge of tensor manipulation, and introduces their applications in modern science.

Module Overview

This module gives a mathematical foundation of ideal and viscous fluid dynamics and their application to describing various flows in nature and technology. Students are taught methods of analysing and solving equations of fluid dynamics using analytic and most modern computational tools.

Module Overview

This module is designed to provide students with an insight into the teaching of Mathematics at secondary school level and does this by combining university lectures with an experience of a placement in a secondary school Mathematics department. The module aims to provide students with an opportunity to engage with cutting-edge maths education research and will examine how this research impacts directly on classroom practice. Students will have the opportunity to gain an insight into some of the key ideas in Mathematics pedagogy and how these are implemented in the school Mathematics lessons and will develop an understanding about the barriers to learning Mathematics that many students experience.

Module Overview

The module aims to equip students with methods to analyse and solve various mathematical equations found in physics and technology.

Module Overview

This module examines some of the philosophical issues raised by the Newtonian revolution in the natural sciences, such as: What is the nature of Newton’s distinction between ‘absolute’ and ‘relative’ space? In what sense can forces be said to exist? What is the ontology of force? Is it sufficient to provide a mathematical definition of force (e.g., f=ma)? Is gravity a special kind of force with its own unique set of properties? What is the nature of ‘action at a distance’? Is Newton’s view of space metaphysical? This is an interdisciplinary module that situates Newtonian science in its sociocultural context.

Module Overview

The module aims to equip students with knowledge of various numerical methods for solving applied mathematics problems, their algorithms and implementation in programming languages.

† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

How you are assessed

Assessment Feedback

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to students promptly – usually within 15 working days after the submission date.

Methods of Assessment

The way students are assessed on this course may vary for each module. Examples of assessment methods that are used include coursework, such as written assignments, reports or dissertations; practical exams, such as presentations, performances or observations; and written exams, such as formal examinations or in-class tests. The weighting given to each assessment method may vary across each academic year. The University of Lincoln aims to ensure that staff return in-course assessments to students promptly.

Assessment Feedback

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to students promptly – usually within 15 working days after the submission date.

Methods of Assessment

The way students are assessed on this course may vary for each module. Examples of assessment methods that are used include coursework, such as written assignments, reports or dissertations; practical exams, such as presentations, performances or observations; and written exams, such as formal examinations or in-class tests. The weighting given to each assessment method may vary across each academic year. The University of Lincoln aims to ensure that staff return in-course assessments to students promptly.

Fees and Scholarships

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. The University of Lincoln offers a variety of merit-based and subject-specific bursaries and scholarships. For full details and information about eligibility, visit our scholarships and bursaries pages.

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. The University of Lincoln offers a variety of merit-based and subject-specific bursaries and scholarships. For full details and information about eligibility, visit our scholarships and bursaries pages.

Entry Requirements 2020-21

United Kingdom

GCE Advanced Levels: BBB, including grade B from A Level Maths.

International Baccalaureate: 30 points overall, with Higher Level grade 5 in Maths.

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 120 UCAS Tariff points, including 40 points from 15 credits in Maths.

BTEC qualifications may be considered with a grade B in A Level Maths.
Please contact our Admissions team for further information (admissions@lincoln.ac.uk)

Applicants will also need at least three GCSEs at grade 4 (C) or above, which must include English, Maths and Science. Equivalent Level 2 qualifications may also be considered.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

For applicants who do not meet our standard entry requirements, our Science Foundation Year can provide an alternative route of entry onto our full degree programmes:
https://www.lincoln.ac.uk/home/course/sfysfyub/lifesciences/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Entry Requirements 2021-22

United Kingdom

GCE Advanced Levels: BBC, including grade B from A Level Maths.

International Baccalaureate: 29 points overall, with Higher Level grade 5 in Maths.

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 112 UCAS Tariff points, including 40 points from 15 credits in Maths.

BTEC qualifications may be considered with a grade B in A Level Maths.
Please contact our Admissions team for further information (admissions@lincoln.ac.uk)

Applicants will also need at least three GCSEs at grade 4 (C) or above, which must include English, Maths and Science. Equivalent Level 2 qualifications may also be considered.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

For applicants who do not meet our standard entry requirements, our Science Foundation Year can provide an alternative route of entry onto our full degree programmes:
https://www.lincoln.ac.uk/home/course/sfysfyub/lifesciences/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Accreditations and Memberships

This programme currently meets the educational requirements of the Chartered Mathematician designation, awarded by the Institute of Mathematics and its Applications, when it is followed by subsequent training and experience in employment to obtain equivalent competences to those specified by the Quality Assurance Agency for taught Master's degrees. Accreditation expires during the 2020/2021 academic year. The University intends to renew the accreditation so that it is valid for students commencing their studies in September 2021. This programme is also recognised by the Institute of Physics.

Features

Research Informed

Teaching on this course is conducted by academic members of staff who are active researchers in their fields. This research informs teaching at all levels of the programme. Staff conduct cutting-edge research in fundamental and applied mathematics and physics, ranging from pure mathematics to applied nano-science at the interface between biology, chemistry, physics, and mathematics. The School collaborates with top research institutions in Germany, Japan, Norway, the Netherlands, Singapore, Spain, and the USA.

Visiting Speakers

The School of Mathematics and Physics regularly welcomes guest speakers from around the world. Recent visitors to the University of Lincoln have included former vice president of the Royal Astronomical Society Professor Don Kurtz, mathematician and author Professor Marcus du Sautoy OBE, and operations research specialist Ruth Kaufman OBE.

Placements

Students on this course are encouraged to obtain and undertake work placements independently in the UK or overseas during their studies, providing hands-on experience in industry. These can range from a few weeks to a full year if students choose the sandwich year option. Placements may be conducted with external research institutions (which can be overseas). The option is subject to availability and selection criteria set by the industry or external institution. When undertaking optional placements, students will be required to cover their transport, accommodation, and general living costs.

Career Opportunities

Graduates may pursue careers in the fields of science, education, finance, business, consultancy, and research and development. This degree promotes skills in creative, critical, and independent thinking. It may prove beneficial in careers requiring flexibility and the ability to formulate a persuasive case. This could include careers in politics and the media, as well as the civil service, among other areas. Some graduates may choose to continue their studies at postgraduate level.

Virtual Open Days

While you may not be able to visit us in person at the moment, you can still find out more about the University of Lincoln and what it is like to live and study here at one of our live Virtual Open Days.

Book Your Place

Related Courses

The University intends to provide its courses as outlined in these pages, although the University may make changes in accordance with the Student Admissions Terms and Conditions.
-->