Key Information

Full-time

3-4 years

Typical Offer

BBB (120 UCAS Tariff points from a minimum of 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

F3V5

Course Code

PHYPHLUB

Key Information

Full-time

3-4 years

Typical Offer

BBC (112 UCAS Tariff points from a minimum of 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

F3V5

Course Code

PHYPHLUB

BSc (Hons) Physics with Philosophy BSc (Hons) Physics with Philosophy

The University of Lincoln is ranked in the top 20 UK universities in the Guardian University Guide 2020.

Key Information

Full-time

3-4 years

Typical Offer

BBB (120 UCAS Tariff points from a minimum of 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

F3V5

Course Code

PHYPHLUB

Key Information

Full-time

3-4 years

Typical Offer

BBC (112 UCAS Tariff points from a minimum of 3 A levels)

Campus

Brayford Pool

Validation Status

Validated

Fees

View

UCAS Code

F3V5

Course Code

PHYPHLUB

Teaching and Learning During COVID-19

The current COVID-19 pandemic has meant that at Lincoln we are making changes to our teaching and learning approach and to our campus, to ensure that students and staff can enjoy a safe and positive learning experience here at Lincoln.

From autumn 2020 our aim is to provide an on-campus learning experience. Our intention is that teaching will be delivered through a mixture of face-to-face and online sessions. There will be social activities in place for students - all in line with appropriate social distancing and fully adhering to any changes in government guidance as our students' safety is our primary concern.

We want to ensure that your Lincoln experience is as positive, exciting and enjoyable as possible as you embark on the next phase of your life. COVID-19 has encouraged us to review our practices and, as a result, to take the opportunity to find new ways to enhance the Lincoln experience. It has challenged us to find innovative new approaches to supporting students' learning and social interactions. These learning experiences, which blend digital and face-to-face, will be vital in helping to prepare our students for a 21st Century workplace.

Of course at Lincoln, personal tutoring is key to our delivery, providing every student with a dedicated tutor to support them throughout their time here at the University. Smaller class sizes mean our academic staff can engage with each student as an individual, and work with them to enhance their strengths. In this environment we hope that students have more opportunities for discussion and engagement and get to know each other better.

Course learning outcomes are vital to prepare you for your future and we aim to utilise this mix of face-to-face and online teaching to deliver these. Students benefit from and enjoy fieldtrips and placements and, whilst it is currently hard to predict the availability of these, we are working hard and with partners and will aspire to offer these wherever possible - obviously in compliance with whatever government guidance is in place at the time.

We are utilising a range of different digital tools for teaching including our dedicated online managed learning environment. All lectures for larger groups will be delivered online using interactive software and a range of different formats. We aim to make every contact count and seminars and small group sessions will maximise face-to-face interaction. Practicals, workshops, studio sessions and performance-based sessions are planned to be delivered face-to-face, in a socially distanced way with appropriate PPE.

The University of Lincoln is a top 20 TEF Gold University and we have won awards for our approach to teaching and learning, our partnerships and industry links, and the opportunities these provide for our students. Our aim is that our online and socially distanced delivery during this COVID-19 pandemic is engaging and that students can interact with their tutors and each other and contribute to our academic community.

As and when restrictions start to lift, we aim to deliver an increasing amount of face-to-face teaching and external engagements, depending on each course. Safety will continue to be our primary focus and we will respond to any changing circumstances as they arise to ensure our community is supported. More information about the specific approaches for each course will be shared when teaching starts.

Of course as you start a new academic year it will be challenging but we will be working with you every step of the way. For all our students new and established, we look forward to welcoming you to our vibrant community this Autumn. If you have any questions please visit our FAQs or contact us on 01522 886644.

Dr Fabien Paillusson - Programme Leader

Dr Fabien Paillusson - Programme Leader

Dr Fabien Paillusson's interests lie in theoretical and computational modelling, the foundations of physics, physics and maths education, AI (Machine Learning and Automated Reasoning), logic, and the philosophy of science.

School Staff List

Welcome to BSc (Hons) Physics with Philosophy

This joint degree programme introduces fundamental and applied physics, while developing a philosophical understanding of the world we live in and the place we occupy within it.

Combining physics with philosophy offers students the chance to study, reflect on, and understand scientific material. Students can apply philosophical theory and ask the fundamental questions designed to investigate, enhance, and expand knowledge.

Students have the opportunity to learn from, and work alongside, our team of academics who can support and encourage them to apply imagination, creativity, and rigour to the solution of real-world problems. Individual and group projects during the course are designed to develop transferable skills.

Welcome to BSc (Hons) Physics with Philosophy

This joint degree programme introduces fundamental and applied physics, while developing a philosophical understanding of the world we live in and the place we occupy within it.

Combining physics with philosophy offers students the chance to study, reflect on, and understand scientific material. Students can apply philosophical theory and ask the fundamental questions designed to investigate, enhance, and expand knowledge.

Students have the opportunity to learn from, and work alongside, our team of academics who can support and encourage them to apply imagination, creativity, and rigour to the solution of real-world problems. Individual and group projects during the course are designed to develop transferable skills.

How You Study

The course is designed to provide a thorough grounding in experimental and theoretical physics, alongside the study of philosophy. It is structured to enable students to engage with the core physics curriculum and to examine it from different perspectives more deeply.

Students can develop critical thinking and reflective skills alongside numerical and analytical methods of physics and mathematics, and practical scientific and research techniques. The course also aims to develop a wide range of transferable skills, including logical reasoning, critical analysis, communication, and teamwork.

The course is taught via lectures, problem solving classes, computer based classes and seminars.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. To help you choose the course that’s right for you, we aim to bring to your attention all the important information you may need. Our What You Need to Know page offers detailed information on key areas including contact hours, assessment, optional modules, and additional costs.

Find out More

How You Study

The course is designed to provide a thorough grounding in experimental and theoretical physics, alongside the study of philosophy. It is structured to enable students to engage with the core physics curriculum and to examine it from different perspectives more deeply.

Students can develop critical thinking and reflective skills alongside numerical and analytical methods of physics and mathematics, and practical scientific and research techniques. The course also aims to develop a wide range of transferable skills, including logical reasoning, critical analysis, communication, and teamwork.

In the first year modules include Geometrical Optics, Waves and Mechanics; Calculus; and Introduction to Philosophical Logic. Progressing into the second year students can study modules including Differential Equations, Condensed Matter Physics, and Philosophy of Science. The third year offers modules such as Physics of the Universe, Quantum Mechanics, and Contemporary Problems in Philosophy, in addition to a range of optional modules including Methods of Mathematical Physics, Newton's Revolution, and Fluid Dynamics.

The course is taught via lectures, problem solving classes, computer based classes and seminars.

What You Need to Know

We want you to have all the information you need to make an informed decision on where and what you want to study. To help you choose the course that’s right for you, we aim to bring to your attention all the important information you may need. Our What You Need to Know page offers detailed information on key areas including contact hours, assessment, optional modules, and additional costs.

Find out More

An Introduction to Your Modules

Module Overview

This module focuses on the concepts of the derivative and the Riemann integral, which are indispensable in modern sciences. Two approaches are used: both intuitive-geometric, and mathematically rigorous, based on the definition of continuous limits. Important results are the Mean Value Theorem, leading to the representation of some functions as power series (the Taylor series), and the Fundamental Theorem of Calculus which establishes the relationship between differentiation and integration. Further calculus tools are explored, such as the general properties of the derivative and the Riemann integral, as well as the techniques of integration. In this module, students may deal with many "popular" functions used throughout mathematics.

Module Overview

This module presents an introduction to computer packages for analytic formulas manipulation (computer algebra) and technical computing. Students will also have the opportunity to develop skills including; utilising a logbook as a factual record and as reflective self-assessment to support their learning.

Module Overview

This module presents a core understanding of the main subjects of physics. Students have the opportunity to learn basic concepts of electricity, magnetism, thermal and quantum physics. Students also have the opportunity to develop problem solving skills using this material. This module is the cornerstone for a number of subsequent modules.

Module Overview

This module will present an introduction to the fundamentals of waves, geometrical optics and mechanics, including their mathematical foundations.

Module Overview

This module is designed to introduce students to the three areas of discussion in contemporary moral philosophy. Metaethics is concerned with the nature of morality itself and questions such as ‘Are there moral facts?’, ‘If there are moral facts, what is their origin?’. Normative ethics is the attempt to provide a general theory that tells us how to live and enables us to determine what is morally right and wrong. Applied ethics involves the application of ethical principles to specific moral issues (e.g., abortion, euthanasia, animal rights) and the evaluation of the answers arrived at through this application. This module aims to introduce students to all three of these branches of ethics.

Module Overview

This module introduces some of the basic ideas and concepts of philosophical logic and the technical vocabulary that is required for understanding contemporary philosophical writing. Students are introduced to logical concepts such as validity, soundness, consistency, possibility, necessity, contingency, inductive and deductive forms of argument, necessary and sufficient conditions, the rudiments of formalisation, and a range of logical fallacies. The emphasis will be on using logic to construct and evaluate arguments.

Module Overview

This module will provide students with the opportunity to learn practical skills needed for physical laboratory experiments. The module provides a structured introduction to laboratory skills development with particular emphasis on measurement uncertainty. This module explores measurement and estimation followed by techniques in data analysis and presentation of data. Students will also have the opportunity to develop practical skills in a set of experiments which examples may include: basic electronic circuits, pendulum, Hooke's law, heat capacity, lenses.

Module Overview

This module describes vector spaces and matrices. Matrices are regarded as representations of linear mappings between vector spaces. Eigenvalues and eigenvectors are introduced, which lead to diagonalization and reduction to other canonical forms. Special types of mappings and matrices (orthogonal, symmetric) are introduced. Applications of linear algebra to geometry of quadratic surfaces are explored.

Module Overview

This module describes the basic principles of condensed matter physics, which directly relates to the physics of all materials around us.

Module Overview

Calculus techniques already provide solutions of simple first-order differential equations. Solution of second-order differential equations can sometimes be achieved by certain manipulations. Students may learn about existence and geometric interpretations of solutions, even when calculus techniques do not yield solutions in a simple form. This is a part of the existence theory of ordinary differential equations and leads to fundamental techniques of the asymptotic and qualitative study of their solutions, including the important question of stability. Fourier series and Fourier transform are introduced. This module provides an introduction to the classical second-order linear partial differential equations and techniques for their solution. The basic concepts and methods are introduced for typical partial differential equations representing the three classes: parabolic, elliptic, and hyperbolic.

Module Overview

This module provides an introduction to theory of electromagnetic field. It describes Maxwell's equations and their solutions, including electromagnetic wave, such as light, and its propagation in a media.

Module Overview

The aim of this module is to give students a thorough understanding of two intimately related philosophical traditions that came to prominence in the 19th and 20th centuries: existentialism and phenomenology. Each attempts to address the nature and meaning of human existence from the perspective of individual, first-person experience, focusing in particular on fundamental questions of being, meaning, death, nihilism, freedom, responsibility, value, human relations, and religious faith. The module will examine selected existential themes through the writings of thinkers such as Kierkegaard, Nietzsche, Heidegger, Sartre, De Beauvoir, and Camus. Since existentialism is as much a artistic phenomenon as a philosophical one, students will also be given the opportunity to explore existentialist ideas in the works of various literary figures, such as Shakespeare, Dostoyevsky, Kafka, and Milan Kundera.

Module Overview

This module aims to provide students with the experience of working as part of a team on a project. Students will have the opportunity to produce a set of deliverables relevant to their programme of study. Final deliverables will be negotiated between the group and their supervisor, the module coordinator will be responsible for ensuring that each project covers the learning outcomes of the module. Groups are expected to manage their own processes, and to hold regular meetings both with and without their supervisor. Groups will be allocated by the module coordinator and other members of staff. The process of development of the topic under study and the interaction and management of group members underpins the assessment of skills in the module.

Module Overview

This module describes how modern physics is used in everyday industrial practice. Examples used in this module will be aligned with the interests of the university's industrial partners and collaborators. The module also introduces how theoretical apparatus developed initially in physics finds its application in the field of economy.

Module Overview

The aim of this module is to introduce students to main notions of theoretical mechanics. Students will have the opportunity to learn relevant mathematical techniques and methods.

Module Overview

This module explores a range of philosophical questions relating to the nature of science. How are scientific theories developed? Are scientific theories discovered through a ‘flash of genius’ or is something more methodical involved? How much of scientific discovery is down to careful observation? Do scientific theories tell us how the world really is? Do the entities scientific theories postulate – atoms, electromagnetic waves, and so on – really exist? Or are scientific theories merely useful models of reality? Is science independent of its social context? To what extent is scientific inquiry affected by gender, race or politics? Is there such a thing as truth that is not relative to a particular culture, social class or historical era? Drawing on accessible examples from a variety of scientific fields and by answering these and related questions, we shall try to reach an understanding of how science works.

Module Overview

This module gives students the opportunity to engage with some key issues and contemporary debates in key areas of philosophy, such as epistemological relativism, the nature of consciousness, the nature of causation in science, the nature of the self. The precise topics addressed will vary from year to year and students will have input into the choice of topics. The aim of the module is to explore in-depth some significant contemporary philosophical issues and to enable students to develop and enhance their key philosophical and debating skills.

Module Overview

Using the background knowledge from the previous modules, this module aims to equip students with modern physics understanding of the entire Universe at large - from elementary particles till galaxies and their evolution.

Module Overview

In this module the students have the opportunity to conduct modern physics research in a research group of the school, university or an external collaborating establishment.

Module Overview

This module provides a rigorous theoretical foundation of quantum physics. Various methods are introduced and examined via application to a set of quantum phenomena. The module aims to provide the core knowledge for understanding of the whole body of modern physics and the world around us.

Module Overview

The module will introduce the concepts of statistical mechanics at equilibrium. Students will have the opportunity to learn the methods used to describe systems of a large number of particles.

Module Overview

This module gives a mathematical foundation of ideal and viscous fluid dynamics and their application to describing various flows in nature and technology. Students are taught methods of analysing and solving equations of fluid dynamics using analytic and most modern computational tools.

Module Overview

The module aims to equip students with methods to analyse and solve various mathematical equations found in physics and technology.

Module Overview

This module examines some of the philosophical issues raised by the Newtonian revolution in the natural sciences, such as: What is the nature of Newton’s distinction between ‘absolute’ and ‘relative’ space? In what sense can forces be said to exist? What is the ontology of force? Is it sufficient to provide a mathematical definition of force (e.g., f=ma)? Is gravity a special kind of force with its own unique set of properties? What is the nature of ‘action at a distance’? Is Newton’s view of space metaphysical? This is an interdisciplinary module that situates Newtonian science in its sociocultural context.

Module Overview

This module is designed to provide students with an insight into the teaching of science at secondary school level and does this by combining university lectures with an experience of a placement in a secondary school science department. The module is particularly aimed at those considering a career in science teaching and provides students with an opportunity to engage with cutting edge science education research and will examine how this research impacts directly on classroom practice. Students will have the opportunity to gain an insight into some of the key ideas in science pedagogy and how these are implemented in the school science lessons and will develop an understanding about the barriers to learning science that many students experience.

† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

An Introduction to Your Modules

Module Overview

This module focuses on the concepts of the derivative and the Riemann integral, which are indispensable in modern sciences. Two approaches are used: both intuitive-geometric, and mathematically rigorous, based on the definition of continuous limits. Important results are the Mean Value Theorem, leading to the representation of some functions as power series (the Taylor series), and the Fundamental Theorem of Calculus which establishes the relationship between differentiation and integration. Further calculus tools are explored, such as the general properties of the derivative and the Riemann integral, as well as the techniques of integration. In this module, students may deal with many "popular" functions used throughout mathematics.

Module Overview

This module presents an introduction to computer packages for analytic formulas manipulation (computer algebra) and technical computing. Students will also have the opportunity to develop skills including; utilising a logbook as a factual record and as reflective self-assessment to support their learning.

Module Overview

This module presents a core understanding of the main subjects of physics. Students have the opportunity to learn basic concepts of electricity, magnetism, thermal and quantum physics. Students also have the opportunity to develop problem solving skills using this material. This module is the cornerstone for a number of subsequent modules.

Module Overview

This module will present an introduction to the fundamentals of waves, geometrical optics and mechanics, including their mathematical foundations.

Module Overview

This module is designed to introduce students to the three areas of discussion in contemporary moral philosophy. Metaethics is concerned with the nature of morality itself and questions such as ‘Are there moral facts?’, ‘If there are moral facts, what is their origin?’. Normative ethics is the attempt to provide a general theory that tells us how to live and enables us to determine what is morally right and wrong. Applied ethics involves the application of ethical principles to specific moral issues (e.g., abortion, euthanasia, animal rights) and the evaluation of the answers arrived at through this application. This module aims to introduce students to all three of these branches of ethics.

Module Overview

This module introduces some of the basic ideas and concepts of philosophical logic and the technical vocabulary that is required for understanding contemporary philosophical writing. Students are introduced to logical concepts such as validity, soundness, consistency, possibility, necessity, contingency, inductive and deductive forms of argument, necessary and sufficient conditions, the rudiments of formalisation, and a range of logical fallacies. The emphasis will be on using logic to construct and evaluate arguments.

Module Overview

This module will provide students with the opportunity to learn practical skills needed for physical laboratory experiments. The module provides a structured introduction to laboratory skills development with particular emphasis on measurement uncertainty. This module explores measurement and estimation followed by techniques in data analysis and presentation of data. Students will also have the opportunity to develop practical skills in a set of experiments which examples may include: basic electronic circuits, pendulum, Hooke's law, heat capacity, lenses.

Module Overview

This module describes vector spaces and matrices. Matrices are regarded as representations of linear mappings between vector spaces. Eigenvalues and eigenvectors are introduced, which lead to diagonalisation and reduction to other canonical forms. Special types of mappings and matrices (orthogonal, symmetric) are also introduced.

Module Overview

This module describes the basic principles of condensed matter physics, which directly relates to the physics of all materials around us.

Module Overview

Calculus techniques already provide solutions of simple first-order differential equations. Solution of second-order differential equations can sometimes be achieved by certain manipulations. Students may learn about existence and geometric interpretations of solutions, even when calculus techniques do not yield solutions in a simple form. This is a part of the existence theory of ordinary differential equations and leads to fundamental techniques of the asymptotic and qualitative study of their solutions, including the important question of stability. Fourier series and Fourier transform are introduced. This module provides an introduction to the classical second-order linear partial differential equations and techniques for their solution. The basic concepts and methods are introduced for typical partial differential equations representing the three classes: parabolic, elliptic, and hyperbolic.

Module Overview

This module provides an introduction to theory of electromagnetic field. It describes Maxwell's equations and their solutions, including electromagnetic wave, such as light, and its propagation in a media.

Module Overview

The aim of this module is to give students a thorough understanding of two intimately related philosophical traditions that came to prominence in the 19th and 20th centuries: existentialism and phenomenology. Each attempts to address the nature and meaning of human existence from the perspective of individual, first-person experience, focusing in particular on fundamental questions of being, meaning, death, nihilism, freedom, responsibility, value, human relations, and religious faith. The module will examine selected existential themes through the writings of thinkers such as Kierkegaard, Nietzsche, Heidegger, Sartre, De Beauvoir, and Camus. Since existentialism is as much a artistic phenomenon as a philosophical one, students will also be given the opportunity to explore existentialist ideas in the works of various literary figures, such as Shakespeare, Dostoyevsky, Kafka, and Milan Kundera.

Module Overview

This module aims to provide students with the experience of working as part of a team on a project. Students will have the opportunity to produce a set of deliverables relevant to their programme of study. Final deliverables will be negotiated between the group and their supervisor, the module coordinator will be responsible for ensuring that each project covers the learning outcomes of the module. Groups are expected to manage their own processes, and to hold regular meetings both with and without their supervisor. Groups will be allocated by the module coordinator and other members of staff. The process of development of the topic under study and the interaction and management of group members underpins the assessment of skills in the module.

Module Overview

This module describes how modern physics is used in everyday industrial practice. Examples used in this module will be aligned with the interests of the university's industrial partners and collaborators. The module also introduces how theoretical apparatus developed initially in physics finds its application in the field of economy.

Module Overview

The aim of this module is to introduce students to main notions of theoretical mechanics. Students will have the opportunity to learn relevant mathematical techniques and methods.

Module Overview

This module explores a range of philosophical questions relating to the nature of science. How are scientific theories developed? Are scientific theories discovered through a ‘flash of genius’ or is something more methodical involved? How much of scientific discovery is down to careful observation? Do scientific theories tell us how the world really is? Do the entities scientific theories postulate – atoms, electromagnetic waves, and so on – really exist? Or are scientific theories merely useful models of reality? Is science independent of its social context? To what extent is scientific inquiry affected by gender, race or politics? Is there such a thing as truth that is not relative to a particular culture, social class or historical era? Drawing on accessible examples from a variety of scientific fields and by answering these and related questions, we shall try to reach an understanding of how science works.

Module Overview

This module gives students the opportunity to engage with some key issues and contemporary debates in key areas of philosophy, such as epistemological relativism, the nature of consciousness, the nature of causation in science, the nature of the self. The precise topics addressed will vary from year to year and students will have input into the choice of topics. The aim of the module is to explore in-depth some significant contemporary philosophical issues and to enable students to develop and enhance their key philosophical and debating skills.

Module Overview

Using the background knowledge from the previous modules, this module aims to equip students with modern physics understanding of the entire Universe at large - from elementary particles till galaxies and their evolution.

Module Overview

In this module the students have the opportunity to conduct modern physics research in a research group of the school, university or an external collaborating establishment.

Module Overview

This module provides a rigorous theoretical foundation of quantum physics. Various methods are introduced and examined via application to a set of quantum phenomena. The module aims to provide the core knowledge for understanding of the whole body of modern physics and the world around us.

Module Overview

The module will introduce the concepts of statistical mechanics at equilibrium. Students will have the opportunity to learn the methods used to describe systems of a large number of particles.

Module Overview

This module gives a mathematical foundation of ideal and viscous fluid dynamics and their application to describing various flows in nature and technology. Students are taught methods of analysing and solving equations of fluid dynamics using analytic and most modern computational tools.

Module Overview

The module aims to equip students with methods to analyse and solve various mathematical equations found in physics and technology.

Module Overview

This module examines some of the philosophical issues raised by the Newtonian revolution in the natural sciences, such as: What is the nature of Newton’s distinction between ‘absolute’ and ‘relative’ space? In what sense can forces be said to exist? What is the ontology of force? Is it sufficient to provide a mathematical definition of force (e.g., f=ma)? Is gravity a special kind of force with its own unique set of properties? What is the nature of ‘action at a distance’? Is Newton’s view of space metaphysical? This is an interdisciplinary module that situates Newtonian science in its sociocultural context.

Module Overview

This module is designed to provide students with an insight into the teaching of science at secondary school level and does this by combining university lectures with an experience of a placement in a secondary school science department. The module is particularly aimed at those considering a career in science teaching and provides students with an opportunity to engage with cutting edge science education research and will examine how this research impacts directly on classroom practice. Students will have the opportunity to gain an insight into some of the key ideas in science pedagogy and how these are implemented in the school science lessons and will develop an understanding about the barriers to learning science that many students experience.

† Some courses may offer optional modules. The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

How you are assessed

Assessment Feedback

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to students promptly – usually within 15 working days after the submission date.

Methods of Assessment

The way students are assessed on this course may vary for each module. Examples of assessment methods that are used include coursework, such as written assignments, reports or dissertations; practical exams, such as presentations, performances or observations; and written exams, such as formal examinations or in-class tests. The weighting given to each assessment method may vary across each academic year. The University of Lincoln aims to ensure that staff return in-course assessments to students promptly.

The course is assessed through a variety of method including coursework, examinations, written reports, and oral presentations.

Assessment Feedback

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to students promptly – usually within 15 working days after the submission date.

Methods of Assessment

The way students are assessed on this course may vary for each module. Examples of assessment methods that are used include coursework, such as written assignments, reports or dissertations; practical exams, such as presentations, performances or observations; and written exams, such as formal examinations or in-class tests. The weighting given to each assessment method may vary across each academic year. The University of Lincoln aims to ensure that staff return in-course assessments to students promptly.

Fees and Scholarships

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. The University of Lincoln offers a variety of merit-based and subject-specific bursaries and scholarships. For full details and information about eligibility, visit our scholarships and bursaries pages.

Going to university is a life-changing step and it's important to understand the costs involved and the funding options available before you start. A full breakdown of the fees associated with this programme can be found on our course fees pages.

Course Fees

For eligible undergraduate students going to university for the first time, scholarships and bursaries are available to help cover costs. The University of Lincoln offers a variety of merit-based and subject-specific bursaries and scholarships. For full details and information about eligibility, visit our scholarships and bursaries pages.

Entry Requirements 2020-21

United Kingdom

GCE Advanced Levels: BBB, to include a grade B from both A Level Maths and Physics.

International Baccalaureate: 30 points overall, with Higher Level Grade 5 in Maths and Physics.

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 120 UCAS Tariff points, including 40 points from 15 credits in Maths and 15 credits in Physics

BTEC qualifications may be considered with a grade B in A Level Maths and Physics.
Please contact our Admissions team for further information (admissions@lincoln.ac.uk)

Applicants will also need at least three GCSEs at grade 4 (C) or above, which must include English Maths and Science. Equivalent Level 2 qualifications may also be considered.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

For applicants who do not meet our standard entry requirements, our Science Foundation Year can provide an alternative route of entry onto our full degree programmes:
https://www.lincoln.ac.uk/home/course/sfysfyub/lifesciences/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Entry Requirements 2021-22

United Kingdom

GCE Advanced Levels: BBC, to include a grade B from both A Level Maths and Physics.

International Baccalaureate: 29 points overall, with Higher Level Grade 5 in Maths and Physics.

Access to Higher Education Diploma: 45 Level 3 credits with a minimum of 112 UCAS Tariff points, including 40 points from 15 credits in Maths and 15 credits in Physics

BTEC qualifications may be considered with a grade B in A Level Maths and Physics.
Please contact our Admissions team for further information (admissions@lincoln.ac.uk)

Applicants will also need at least three GCSEs at grade 4 (C) or above, which must include English Maths and Science. Equivalent Level 2 qualifications may also be considered.

International

Non UK Qualifications:

If you have studied outside of the UK, and are unsure whether your qualification meets the above requirements, please visit our country pages https://www.lincoln.ac.uk/home/studywithus/internationalstudents/entryrequirementsandyourcountry/ for information on equivalent qualifications.

EU and Overseas students will be required to demonstrate English language proficiency equivalent to IELTS 6.0 overall, with a minimum of 5.5 in each element. For information regarding other English language qualifications we accept, please visit the English Requirements page https://www.lincoln.ac.uk/home/studywithus/internationalstudents/englishlanguagerequirementsandsupport/englishlanguagerequirements/

If you do not meet the above IELTS requirements, you may be able to take part in one of our Pre-sessional English and Academic Study Skills courses.

For applicants who do not meet our standard entry requirements, our Science Foundation Year can provide an alternative route of entry onto our full degree programmes:
https://www.lincoln.ac.uk/home/course/sfysfyub/lifesciences/

If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk

Features

Research Informed

Teaching on this course is conducted by academic members of staff who are active researchers in their fields. This research informs teaching at all levels of the programme. Staff conduct cutting-edge research in fundamental and applied mathematics and physics, ranging from pure mathematics to applied nano-science at the interface between biology, chemistry, physics, and mathematics. The School collaborates with top research institutions in Germany, Japan, Norway, the Netherlands, Singapore, Spain, and the USA.

Visiting Speakers

The School of Mathematics and Physics regularly welcomes guest speakers from around the world. Recent visitors to the University of Lincoln have included former vice president of the Royal Astronomical Society Professor Don Kurtz, mathematician and author Professor Marcus du Sautoy OBE, and operations research specialist Ruth Kaufman OBE.

Placements

Students on this course are encouraged to obtain and undertake work placements independently in the UK or overseas during their studies, providing hands-on experience in industry. These can range from a few weeks to a full year if students choose the sandwich year option. Placements may be conducted with external research institutions (which can be overseas). The option is subject to availability and selection criteria set by the industry or external institution. When undertaking optional placements, students will be required to cover their transport, accommodation, and general living costs.

Career Opportunities

Graduates may pursue careers in the fields of science, education, finance, business, consultancy, and research and development. This degree promotes skills in creative, critical, and independent thinking. It may prove beneficial in careers requiring flexibility and the ability to formulate a persuasive case. This could include careers in politics and the media, as well as the civil service, among other areas. Some graduates may choose to continue their studies at postgraduate level.

Virtual Open Days

While you may not be able to visit us in person at the moment, you can still find out more about the University of Lincoln and what it is like to live and study here at one of our live Virtual Open Days.

Book Your Place

Related Courses

The University intends to provide its courses as outlined in these pages, although the University may make changes in accordance with the Student Admissions Terms and Conditions.
-->