Course Information
Select year of entry:
4 years 7 - 8 years School of Chemistry Lincoln Campus [L] Validated F152 4 years 7 - 8 years School of Chemistry Lincoln Campus [L] Validated F152

Introduction

Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.

The MChem Chemistry degree aims to integrate the core chemistry disciplines with advanced topics aligned to the major scientific challenges of the 21st Century. These include nanoscience for new materials and devices, the chemistrybiology interface for drugs discovery, nuclear chemistry for safe energy generation, biotechnology for new manufacturing methods, and sensors for forensic medical and environmental applications.

Students have the opportunity to engage with staff in research projects and this research-focused environment can enable students to develop practical expertise and apply theoretical knowledge to the role of chemistry in the modern world.

How You Study

The course includes lectures, seminars, laboratory-based practical classes and lectures from visiting scientists. Extensive small-group teaching and innovative team-based learning create a supportive learning environment that helps you train through practice- and problem-based approaches.

Students can focus initially on organic, inorganic and physical chemistry through an integrated approach that emphasises connectivity. Laboratory workshops and extensive use of specialist equipment aims to enable students to develop hands-on skills. Later in the course, students have the opportunity to apply their experience to a range of real-world applications, including industry-informed, interdisciplinary projects. A significant research project provides students with the chance to develop a specialism of their choice. Throughout the course, there is an emphasis on developing the professional skills required in your future career.

All students in the fourth year of the MChem programme currently have the opportunity to undertake a full-year placement. You can choose your placement with one of the University’s industry or overseas partners, or in one of our research groups. Placements are conducted alongside advanced academic study, focusing on research frontiers in chemistry.

Students are supported in finding their placement and when undertaking it. Costs which can be incurred as a result of placements are outlined in the Features Tab.

Contact Hours and Independent Study

Contact hours may vary for each year of a degree. When engaging in a full-time degree students should, at the very least, expect to undertake a minimum of 37 hours of study each week during term time (including independent study) in addition to potentially undertaking assignments outside of term time. The composition and delivery for the course breaks down differently for each module and may include lectures, seminars, workshops, independent study, practicals, work placements, research and one-to-one learning.

University-level study involves a significant proportion of independent study, exploring the material covered in lectures and seminars. As a general guide, for every hour in class students are expected to spend two - three hours in independent study.

On each of our course pages you can find information on typical contact hours, modes of delivery and a breakdown of assessment methods. Where available, you will also be able to access a link to Unistats.com, where the latest data on student satisfaction and employability outcomes can be found.

How You Are Assessed

Assessment Feedback

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to students promptly – usually within 15 working days after the submission date (unless stated differently above)..

Methods of Assessment

The way students will be assessed on this course will vary for each module. It could include coursework, such as a dissertation or essay, written and practical exams, portfolio development, group work or presentations to name some examples.

For a breakdown of assessment methods used on this course and student satisfaction, please visit the Unistats website, using the link at the bottom of this page.

Throughout this degree, students may receive tuition from professors, senior lecturers, lecturers, researchers, practitioners, visiting experts or technicians, and they may be supported in their learning by other students.

Staff

Throughout this degree, students may receive tuition from professors, senior lecturers, lecturers, researchers, practitioners, visiting experts or technicians, and they may be supported in their learning by other students.

For a comprehensive list of teaching staff, please see our School of Chemistry Staff Pages.

Entry Requirements 2017-18

GCE Advanced Levels: BBB, including a grade B from A Level Chemistry.

International Baccalaureate: 30 points overall, with Higher Level grade 5 in Chemistry.

BTEC Extended Diploma Applied Science accepted, depending on modules studied: Distinction, Distinction, Merit

Access to Higher Education Diploma in a science subject accepted: A minimum of 45 level 3 credits at merit or above will be required, to include 15 credits at merit from Chemistry.

We will also consider applicants with extensive relevant work experience.

In addition, applicants must have at least 3 GCSEs at grade C or above in English, Maths and Science. Level 2 equivalent qualifications such as BTEC First Certificates and Level 2 Functional Skills will be considered.


If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk.

Level 1

Core Chemistry 1.1: Introduction to Energy, Change and Electronic Structure (Core)

This module aims to provide a breadth core understanding of the main chemical principles behind the chemistry of elements, systems in equilibrium and chemical reactivity, with special emphasis in basic organic reactions.

Students will have the opportunity to learn basic concepts about elements and their main periodic properties and how some of these elements can be combined to produce molecules. Organic molecules will be used as an example to explain reactivity and how chemical structure can condition molecular properties. Energy transfers are also studied to understand the key role they play in chemical and physical transformations and how systems in equilibrium are affected by these.

Core Chemistry 1.2: Molecular Structure, Bonding and Mechanism (Core)

This module aims to introduce core chemistry concepts with an emphasis on chemical change. Movement and interaction of molecules and chemical kinetics are key physical chemistry topics covered and applied to chemical reactions of both organic and inorganic substances. The use of empirical data to develop and support laws, theories and models will be covered and how chemical kinetics can be used to develop reaction mechanisms. An introduction to crystallography and absorption spectroscopy is covered.

Introduction to Pharmaceutical Science (Core)

What makes a successful drug, the basics of drug discovery, development and utilisation are covered in this module. The concepts of pharmaceutical science are taught along with the types of drugs, their formulation and delivery.

Introduction to Professional Practice (Core)

This module aims to provide students with an overview of the application of chemistry in commercial and industrial contexts to underpin more detailed coverage in later models in this series.

The module aims to develop fundamental skills in mathematics and IT which will underpin their core chemistry modules. The module will also give students the opportunity to develop their transferable skills including knowledge of health and safety in the chemistry laboratory, effective communication in both written and oral form and group work.

Practical Chemistry 1.1: Fundamental laboratory techniques (Core)

This module aims to introduce students to the chemistry laboratory environment. The purpose of the module is to provide students with a platform which can be built upon in subsequent practical modules and equalise their potentially pre-university laboratory experience.

Within this module students can learn a portfolio of skills and be evaluated via competency based assessments. The module also covers best practice in health and safety in the laboratory environment as part of the series of key core concepts delivered in the module.

Practical Chemistry 1.2: Introduction to synthetic methodologies and molecular characterisation (Core)

This module aims to provide students with the practical experience associated with the topics delivered in Core Chemistry 1.1 and Core Chemistry 1.2.

The module will outline key organic, inorganic and physical chemistry concepts with a series of laboratory activities reinforced by the use of relevant analytical techniques and tools throughout a range of experiments.

Professional Practice 1: Analytical Sciences (Core)

This module further builds on 'Introduction to Professional Practice' and aims to provide an introduction to the application of analytical sciences in industry.

It aims to develop students' mathematics and statistics skills whilst also continuing the development of their transferable skills relating to information retrieval including literature searching and critique, the use of chemistry-based databases and mobile applications and their scientific writing skills.

Level 2

Core Chemistry 2.1: Stability, Structure and Mechanism in Molecular Systems (Core)

This module aims to provide a breadth core understanding of the physicochemical principles behind some of the main analytical techniques and how these can be applied to identify atomic and molecular structures in both inorganic and organic chemistry. It also offers an insight on advanced synthetic methods and how these techniques can be used to explain and interpret structure and reactivity of complex molecules, such as coordination and organometallic compounds.

Core Chemistry 2.2: Chemistry of Activated Systems and Radicals (Core)

This module aims to further develop core chemistry concepts relating to chemical change. Electrochemistry is used to study thermodynamic properties of redox reactions as well as the kinetics of electrode processes. The kinetics of complex reactions builds upon the chemical kinetics material covered at level one. Bonding between metals and carbon is explored and further developed as the main group organometallics.

Drug Design and Development (Core)

This module will aim to integrate the process of drug discovery and target selection in relation to therapeutic area and how drugs are formulated and delivered to the target. Learning will be in the context of examples of drugs, from discovery to their registration or attrition.

Drug Formulation and Delivery (Core)

This module aims to integrate the process of drug development in relation to the way in which a dosage forms are formulated and delivered to the target. Learning will be in the context of examples of dosage form, drug delivery route and underlying formulation, particle design, physical chemistry and colloid science .

Fundamentals of Pharmacology & Toxicology (Core)

This module is concerned with the study of the mechanisms by which drugs interact with biochemical, cellular and physiological systems.

The module aims to:

  • Give an introduction to pharmacology principles
  • Provide a detailed knowledge of the mechanisms of actions of selected drugs
  • Develop a critical appreciation of the importance and relevance of pharmacology in the treatment of selected diseases
  • Understand the basic principles of toxicology and drug overdose therapies.

Practical Chemistry 2.1: Organic synthesis, purification and advanced characterisation (Core)

This module aims to provide students with the practical experience associated with the topics delivered in Core Chemistry 2.1, with a strong focus on organic chemistry.

The module will outline essential complex organic chemistry concepts with a series of laboratory activities designed around multistep syntheses and reinforced by the use of relevant analytical techniques and tools throughout a range experiments.

Practical Chemistry 2.2: Inorganic synthesis and structural methods (Core)

This module aims to provide students with the practical experience associated with the topics delivered in Core Chemistry 2.2, with a strong focus on inorganic and physical chemistry.

The module is constituted of a series of laboratory activities designed to familiarise students with an array of techniques centred around key aspects of inorganic syntheses. Specifically, the module emphasizes stability and speciation methods and their applications to the inorganic chemistry field. All aspects of the module will be supported by associated relevant analytical technologies.

Level 3

Advanced Pharmacology (Core)

This module looks at advanced aspects of pharmacology, aiming to build an understanding of drug-target engagement in relation to therapy, as well as drug metabolism and pharmacokinetics.

Core Chemistry 3.1: Defining Shape, Symmetry and Stereochemistry (Core)

This module aims to provide deeper understanding on physicochemical principles behind materials and their properties, exploring advanced concepts in supramolecular chemistry and synthetic routes for more complex organic molecules. Crystals, colloids, discontinuous phases and solid state chemistry concepts are studied in depth to understand physical and chemical properties that give these materials a wide range of application in industry and research.

Core Chemistry 3.2: Heterogeneous Systems, Surfaces and Nanoscience (Core)

This module covers in greater depth the thermodynamics and kinetics of processes occurring on solid surfaces. Heterogeneous catalysis is used as an example of how reactions at solid surfaces differ from those in the bulk. Electrochemistry is further developed. Organic chemistry topics are the advanced areas of radical chemistry and orbital symmetry along with heteroelement and organometallic synthesis. Concepts of supramolecular chemistry are covered.

Practical Chemistry 3.1: Advanced techniques in IO-chemistry (Core)

This module builds upon previous practical modules and provides a support for the illustration of the theory delivered in the Core chemistry 3.1 module.

The concept of this module is to offer students the opportunity to experience and dissect the process of designing a material which fulfils specific requirements or needs, its synthesis and its characterisation.
Through this process, the module offers the opportunity to host advanced complex organic syntheses (such as asymmetric synthesis) and supramolecular synthesis.

Additionally, the module introduces students to a series of stereoselective analytical techniques designed to characterise aforementioned materials.

Regulation, Quality and Ethics for the Pharmaceutical Scientist (Core)

This module covers the regulations that surround the pharmaceutical industry, from drug registration to laboratory, clinical and manufacturing standards

Structured project (Core)

This module offers students the opportunity to undertake an independent programme of research under the supervision of a member of staff. It provides students with the opportunity to demonstrate original and critical thoughts as well as build practical and project-management skills.

Students may select a project from a series of proposals provided by staff, conduct a review of the literature, identify a hypothesis, and design a programme of research to test the hypothesis (under guidance from their supervisor). Students will be expected to manage the project including obtaining relevant ethical approval and conducting COSHH and risk assessments.

Students may analyse and interpret data which will be collected in the laboratory or the field, or using computational sources (e.g. software for mathematical modelling; the internet for the meta-analysis of pre-collected data).

The project will be written up either as a thesis or a scientific paper following closely defined criteria.

Level 4

Academic Research Project (Option)

This module provides students with the opportunity to apply chemical knowledge and laboratory skills to an extended practical research study. It also provides the opportunity to further develop professional skills, including the use of online literature/chemical data searching; ability to critically review relevant published literature & written/oral presentation of research activities.

Advanced Topics in Chemistry (Core)

This module aims to provide students skills to critically analyse and adopt topical areas of research and advance instrumentation in the field of chemistry. This information will be utilised to provide students with an understanding and appreciation of how fundamental chemistry theory and experimentation are being applied to contemporary cutting edge science. The module will draw inspiration from both ‘grand challenges for chemical sciences’ and will reflect the current research focus within the chemistry school.

The module comprises a series of lectures, workshops and experimentation and the content within each topic and instrumental techniques, will aim to build on students' knowledge of basic physical, organic and inorganic chemistry and will deliver in-depth analysis of its application in the main-stream chemical, biological and environmental processes. Students will also have the opportunity to learn to provide an up-to-date account of modern methods in synthetic organic chemistry, material & inorganic chemistry and application of physical chemistry theory in experimentation, as well as cover key advanced instrumentation techniques in chemistry and provide hands-on experience.

Commercial Research Project (Option)

This module provides students with the opportunity to apply chemical knowledge and laboratory skills to an extended practical research study within a commercial context. Students can further develop professional skills, incl. use of online literature/chemical data searching; ability to critically review relevant published literature and written/oral presentation of research activities.

Professional and Personal Development (Core)

This module aims to develop systematic personal and professional development of a student in a specialist area of chemistry to enhance employability. This is achieved through development and execution of a personal learning plan designed using a process of self-reflection around five development themes: personal development; professional skills development; technical skills development; research interests; career development.

†The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

Special Features

The philosophy of the School of Chemistry is to combine fundamental research with a strong focus on industry relevance, working with companies to address real needs. From your first week, our programmes provide a hands-on approach, which we call ‘Student as Producer’. This initiative, at the centre of our teaching and learning, provides students with the chance to develop the professional skills required for their future career. The theoretical basis of chemistry is twinned with practical laboratory experience, whilst we also look to develop key industry skills including communications, problem solving and project management.

Our academic community provides a supportive and nurturing teaching environment. There is close interdepartmental collaboration with scientists in the other Schools within the College of Science, including Life Sciences, Pharmacy and Engineering. As a student here, you will have the opportunity to engage in real research and professional problem solving. Our research informs our teaching right from the start of your programme to enhance your learning experience.

The School of Chemistry is home to research teams who are making groundbreaking discoveries across the fields of science. A testing method devised by a research team in the School is leading the way in how substances in ‘legal highs’ are identified.

Professional Practice modules throughout your course are geared to help you develop skills for applying your chemistry in areas such as pharmaceutical development, environmental science, petrochemicals and energy, analytical and quality control.

Placements

We use an innovative ‘end-on’ full-year placement programme for all students at Stage 4 of the MChem. You can choose to focus on research through a placement in a research group at the University or another institution, or complete a full-year placement (usually salaried £15-20k). Salaried placements are competitive and students will be expected to undertake an application process for such positions.

There are also opportunities for overseas placements with European, American and Australian institutions through our International Intern Programme which takes place between Stages 3 and 4.

Placement Year

When students are on an optional placement in the UK or overseas or studying abroad, they will be required to cover their own transport and accommodation and meals costs. Placements can range from a few weeks to a full year if students choose to undertake an optional sandwich year in industry.

Students are encouraged to obtain placements in industry independently. Tutors may provide support and advice to students who require it during this process.

Student as Producer

Student as Producer is a model of teaching and learning that encourages academics and undergraduate students to collaborate on research activities. It is a programme committed to learning through doing.

The Student as Producer initiative was commended by the QAA in our 2012 review and is one of the teaching and learning features that makes the Lincoln experience unique.

Facilities

Students have access to the University’s purpose-built Joseph Banks Laboratories and Science Building, which offer specialist laboratory and teaching spaces. High-specification equipment is available for NMR, mass spectrometry, chromatography, electron microscopy and X-ray diffraction.

At Lincoln, we constantly invest in our campus as we aim to provide the best learning environment for our undergraduates. Whatever the area of study, the University strives to ensure students have access to specialist equipment and resources, to develop the skills, which they may need in their future career.

View our campus pages [www.lincoln.ac.uk/home/campuslife/ourcampus/] to learn more about our teaching and learning facilities.

Career Opportunities

Chemistry graduates may pursue a wide range of science-related careers in sectors including energy, petrochemicals, pharmaceuticals, and consumer and personal care products.

This course aims to equip graduates with extensive analytical and mathematical skills which are relevant to roles in finance, management, science-based marketing and journalism, education and academic research. Some graduates may choose to continue their studies at doctoral level.

Careers Service

The University Careers and Employability Team offer qualified advisors who can work with students to provide tailored, individual support and careers advice during their time at the University. As a member of our alumni we also offer one-to-one support in the first year after completing a course, including access to events, vacancy information and website resources; with access to online vacancies and virtual resources for the following two years.

This service can include one-to-one coaching, CV advice and interview preparation to help you maximise our graduates future opportunities.

The service works closely with local, national and international employers, acting as a gateway to the business world.

Visit our Careers Service pages for further information. [http://www.lincoln.ac.uk/home/campuslife/studentsupport/careersservice/]

Additional Costs

For each course students may find that there are additional costs. These may be with regard to the specific clothing, materials or equipment required, depending on their subject area. Some courses provide opportunities for students to undertake field work or field trips. Where these are compulsory, the cost for the travel, accommodation and meals may be covered by the University and so is included in the fee. Where these are optional students will normally (unless stated otherwise) be required to pay their own transportation, accommodation and meal costs.

With regards to text books, the University provides students who enrol with a comprehensive reading list and our extensive library holds either material or virtual versions of the core texts that students are required to read. However, students may prefer to purchase some of these for themselves and will therefore be responsible for this cost. Where there may be exceptions to this general rule, information will be displayed in a section titled Other Costs below.

Related Courses

Our BSc (Hons) Biochemistry degree takes a research-centred approach to teaching and learning, providing the opportunity to work closely with academics on collaborative research projects.
Our MBio Biochemistry degree takes a research-centred approach to teaching and learning, providing the opportunity to work closely with academics on collaborative research projects.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Forensic chemistry is the application of scientific knowledge and investigation to law enforcement. From identifying substances to analysing crime scenes, the skills of a forensic chemist often play a vital role in criminal investigations.
Forensic chemistry is the application of scientific knowledge and investigation to law enforcement. From identifying substances to analysing crime scenes, the skills of a forensic chemist often play a vital role in criminal investigations.
Our aim at Lincoln is to produce passionate pharmaceutical scientists who are adept in addressing the healthcare challenges of the future and are well prepared for careers in the pharmaceutical and biotechnology industries.
The MPharm course at Lincoln combines the science of medicines and disease with the development of patient-facing decision-making skills and professional practice required by modern pharmacists to care for patients.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.

Introduction

Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.

The MChem Chemistry degree aims to integrate the core chemistry disciplines with advanced topics aligned to the major scientific challenges of the 21st Century. These include nanoscience for new materials and devices, the chemistrybiology interface for drugs discovery, nuclear chemistry for safe energy generation, biotechnology for new manufacturing methods, and sensors for forensic medical and environmental applications.

Students have the opportunity to engage with staff in research projects and this research-focused environment can enable students to develop practical expertise and apply theoretical knowledge to the role of chemistry in the modern world.

How You Study

The course includes lectures, seminars, laboratory-based practical classes and lectures from visiting scientists. Extensive small-group teaching and innovative team-based learning create a supportive learning environment that helps you train through practice- and problem-based approaches.

Students can focus initially on organic, inorganic and physical chemistry through an integrated approach that emphasises connectivity. Laboratory workshops and extensive use of specialist equipment aims to enable students to develop hands-on skills. Later in the course, students have the opportunity to apply their experience to a range of real-world applications, including industry-informed, interdisciplinary projects. A significant research project provides students with the chance to develop a specialism of their choice. Throughout the course, there is an emphasis on developing the professional skills required in your future career.

All students in the fourth year of the MChem programme currently have the opportunity to undertake a full-year placement. You can choose your placement with one of the University’s industry or overseas partners, or in one of our research groups. Placements are conducted alongside advanced academic study, focusing on research frontiers in chemistry.

Students are supported in finding their placement and when undertaking it. Costs which can be incurred as a result of placements are outlined in the Features Tab.

Contact Hours

Level 1:

At level one students will typically have around 16 hours of contact time per week. A typical week may consist of:

  • 6 hours of practical classes and workshops
  • 2 hours in seminars
  • 8 hours in lectures


Level 2:

At level two students will typically have around 16 hours of contact time per week. A typical week may consist of:

  • 6 hours of practical classes and workshops
  • 2 hours in seminars
  • 8 hours in lectures


Level 3:

At level three students will typically have around 17 hours of contact time per week. A typical week may consist of:

  • 6 hours of practical classes and workshops
  • 1 hour of tutorial time
  • 2 hours in seminars
  • 8 hours in lectures


Master's level:

At Master's level students will typically have around 18 hours of contact time per week. A typical week may consist of:

  • 12 hours of supervised time in studios or workshops
  • 2 hours of practical classes and workshops
  • 1 hour of project supervision
  • 1 hour of tutorial time
  • 2 hours in lectures


Overall Workload and Independent Study

University-level study involves a significant proportion of independent study, exploring the material covered in lectures and seminars. Students’ overall workload will consist of their scheduled contact hours combined with independent study. The expected level of independent study is detailed below.

Level 1:

  • Total scheduled teaching and learning hours: 392
  • Percentage scheduled teaching and learning hours: 33%
  • Percentage of independent study expected: 67%


Level 2:

  • Total scheduled teaching and learning hours: 384
  • Percentage scheduled teaching and learning hours: 32%
  • Percentage of independent study expected: 68%


Level 3:

  • Total scheduled teaching and learning hours: 388
  • Percentage scheduled teaching and learning hours: 32%
  • Percentage of independent study expected: 68%


Master's level:

  • Total scheduled teaching and learning hours: 432
  • Percentage scheduled teaching and learning hours: 36%
  • Percentage of independent study expected: 64%

Contact Hours and Independent Study

Contact hours may vary for each year of a degree. When engaging in a full-time degree students should, at the very least, expect to undertake a minimum of 37 hours of study each week during term time (including independent study) in addition to potentially undertaking assignments outside of term time. The composition and delivery for the course breaks down differently for each module and may include lectures, seminars, workshops, independent study, practicals, work placements, research and one-to-one learning.

University-level study involves a significant proportion of independent study, exploring the material covered in lectures and seminars. As a general guide, for every hour in class students are expected to spend two - three hours in independent study.

On each of our course pages you can find information on typical contact hours, modes of delivery and a breakdown of assessment methods. Where available, you will also be able to access a link to Unistats.com, where the latest data on student satisfaction and employability outcomes can be found.

How You Are Assessed

Assessment Feedback

The University of Lincoln's policy on assessment feedback aims to ensure that academics will return in-course assessments to students promptly – usually within 15 working days after the submission date (unless stated differently above)..

Methods of Assessment

The way students will be assessed on this course will vary for each module. It could include coursework, such as a dissertation or essay, written and practical exams, portfolio development, group work or presentations to name some examples.

For a breakdown of assessment methods used on this course and student satisfaction, please visit the Unistats website, using the link at the bottom of this page.

Throughout this degree, students may receive tuition from professors, senior lecturers, lecturers, researchers, practitioners, visiting experts or technicians, and they may be supported in their learning by other students.

Staff

Throughout this degree, students may receive tuition from professors, senior lecturers, lecturers, researchers, practitioners, visiting experts or technicians, and they may be supported in their learning by other students.

For a comprehensive list of teaching staff, please see our School of Chemistry Staff Pages.

Entry Requirements 2018-19

GCE Advanced Levels: BBB, including a grade B from A Level Chemistry.

International Baccalaureate: 30 points overall, with Higher Level grade 5 in Chemistry.

BTEC Extended Diploma Applied Science accepted, depending on modules studied: Distinction, Distinction, Merit

Access to Higher Education Diploma in a science subject accepted: A minimum of 45 level 3 credits at merit or above will be required, to include 15 credits at merit from Chemistry.

We will also consider applicants with extensive relevant work experience.

In addition, applicants must have at least 3 GCSEs at grade C or above in English, Maths and Science. Level 2 equivalent qualifications such as BTEC First Certificates and Level 2 Functional Skills will be considered.


If you would like further information about entry requirements, or would like to discuss whether the qualifications you are currently studying are acceptable, please contact the Admissions team on 01522 886097, or email admissions@lincoln.ac.uk.

Level 1

Core Chemistry 1.1: Introduction to Energy, Change and Electronic Structure (Core)

This module aims to provide a breadth core understanding of the main chemical principles behind the chemistry of elements, systems in equilibrium and chemical reactivity, with special emphasis in basic organic reactions.

Students will have the opportunity to learn basic concepts about elements and their main periodic properties and how some of these elements can be combined to produce molecules. Organic molecules will be used as an example to explain reactivity and how chemical structure can condition molecular properties. Energy transfers are also studied to understand the key role they play in chemical and physical transformations and how systems in equilibrium are affected by these.

Core Chemistry 1.2: Molecular Structure, Bonding and Mechanism (Core)

This module aims to introduce core chemistry concepts with an emphasis on chemical change. Movement and interaction of molecules and chemical kinetics are key physical chemistry topics covered and applied to chemical reactions of both organic and inorganic substances. The use of empirical data to develop and support laws, theories and models will be covered and how chemical kinetics can be used to develop reaction mechanisms. An introduction to crystallography and absorption spectroscopy is covered.

Introduction to Pharmaceutical Science (Core)

This modules covers what makes a successful drug, the basics of drug discovery and development and utilisation. The concepts of pharmaceutical science are taught along with the types of drugs, their formulation and delivery.

Introduction to Professional Practice (Core)

This module aims to provide students with an overview of the application of chemistry in commercial and industrial contexts to underpin more detailed coverage in later models in this series.

The module aims to develop fundamental skills in mathematics and IT which will underpin their core chemistry modules. The module will also give students the opportunity to develop their transferable skills including knowledge of health and safety in the chemistry laboratory, effective communication in both written and oral form and group work.

Practical Chemistry 1.1: Fundamental laboratory techniques (Core)

This module aims to introduce students to the chemistry laboratory environment. The purpose of the module is to provide students with a platform which can be built upon in subsequent practical modules and equalise their potentially pre-university laboratory experience.

Within this module students can learn a portfolio of skills and be evaluated via competency based assessments. The module also covers best practice in health and safety in the laboratory environment as part of the series of key core concepts delivered in the module.

Practical Chemistry 1.2: Introduction to synthetic methodologies and molecular characterisation (Core)

This module aims to provide students with the practical experience associated with the topics delivered in Core Chemistry 1.1 and Core Chemistry 1.2.

The module will outline key organic, inorganic and physical chemistry concepts with a series of laboratory activities reinforced by the use of relevant analytical techniques and tools throughout a range of experiments.

Professional Practice 1: Analytical Sciences (Core)

This module further builds on 'Introduction to Professional Practice' and aims to provide an introduction to the application of analytical sciences in industry.

It aims to develop students' mathematics and statistics skills whilst also continuing the development of their transferable skills relating to information retrieval including literature searching and critique, the use of chemistry-based databases and mobile applications and their scientific writing skills.

Level 2

Core Chemistry 2.1: Stability, Structure and Mechanism in Molecular Systems (Core)

This module aims to provide a breadth core understanding of the physicochemical principles behind some of the main analytical techniques and how these can be applied to identify atomic and molecular structures in both inorganic and organic chemistry. It also offers an insight on advanced synthetic methods and how these techniques can be used to explain and interpret structure and reactivity of complex molecules, such as coordination and organometallic compounds.

Core Chemistry 2.2: Chemistry of Activated Systems and Radicals (Core)

This module aims to further develop core chemistry concepts relating to chemical change. Electrochemistry is used to study thermodynamic properties of redox reactions as well as the kinetics of electrode processes. The kinetics of complex reactions builds upon the chemical kinetics material covered at level one. Bonding between metals and carbon is explored and further developed as the main group organometallics.

Drug Design and Development (Core)

This module will aim to integrate the process of drug discovery and target selection in relation to therapeutic area and how drugs are formulated and delivered to the target. Learning will be in the context of examples of drugs, from discovery to their registration or attrition.

Drug Formulation and Delivery (Core)

This module aims to integrate the process of drug development in relation to the way in which a dosage forms are formulated and delivered to the target. Learning will be in the context of examples of dosage form, drug delivery route and underlying formulation, particle design, physical chemistry and colloid science.

Fundamentals of Pharmacology & Toxicology (Core)

This module is concerned with the study of the mechanisms by which drugs interact with biochemical, cellular and physiological systems.

The module aims to:

  • Give an introduction to pharmacology principles
  • Provide a detailed knowledge of the mechanisms of actions of selected drugs
  • Develop a critical appreciation of the importance and relevance of pharmacology in the treatment of selected diseases
  • Provide an understanding of the basic principles of toxicology and drug overdose therapies.

Practical Chemistry 2.1: Organic synthesis, purification and advanced characterisation (Core)

This module aims to provide students with the practical experience associated with the topics delivered in Core Chemistry 2.1, with a strong focus on organic chemistry.

The module will outline essential complex organic chemistry concepts with a series of laboratory activities designed around multistep syntheses and reinforced by the use of relevant analytical techniques and tools throughout a range experiments.

Practical Chemistry 2.2: Inorganic synthesis and structural methods (Core)

This module aims to provide students with the practical experience associated with the topics delivered in Core Chemistry 2.2, with a strong focus on inorganic and physical chemistry.

The module is constituted of a series of laboratory activities designed to familiarise students with an array of techniques centred around key aspects of inorganic syntheses. Specifically, the module emphasizes stability and speciation methods and their applications to the inorganic chemistry field. All aspects of the module will be supported by associated relevant analytical technologies.

Level 3

Advanced Pharmacology (Core)

This module looks at advanced aspects of pharmacology, aiming to build an understanding of drug-target engagement in relation to therapy, as well as drug metabolism and pharmacokinetics.

Core Chemistry 3.1: Defining Shape, Symmetry and Stereochemistry (Core)

This module aims to provide deeper understanding on physicochemical principles behind materials and their properties, exploring advanced concepts in supramolecular chemistry and synthetic routes for more complex organic molecules. Crystals, colloids, discontinuous phases and solid state chemistry concepts are studied in depth to understand physical and chemical properties that give these materials a wide range of application in industry and research.

Core Chemistry 3.2: Heterogeneous Systems, Surfaces and Nanoscience (Core)

This module covers in greater depth the thermodynamics and kinetics of processes occurring on solid surfaces. Heterogeneous catalysis is used as an example of how reactions at solid surfaces differ from those in the bulk. Electrochemistry is further developed. Organic chemistry topics are the advanced areas of radical chemistry and orbital symmetry along with heteroelement and organometallic synthesis. Concepts of supramolecular chemistry are covered.

Practical Chemistry 3.1: Advanced techniques in IO-chemistry (Core)

This module builds upon previous practical modules and provides a support for the illustration of the theory delivered in the Core chemistry 3.1 module.

The concept of this module is to offer students the opportunity to experience and dissect the process of designing a material which fulfils specific requirements or needs, its synthesis and its characterisation.
Through this process, the module offers the opportunity to host advanced complex organic syntheses (such as asymmetric synthesis) and supramolecular synthesis.

Additionally, the module introduces students to a series of stereoselective analytical techniques designed to characterise aforementioned materials.

Regulation, Quality and Ethics for the Pharmaceutical Scientist (Core)

This module covers the regulations that surround the pharmaceutical industry, from drug registration to laboratory, clinical and manufacturing standards

Structured project (Core)

This module offers students the opportunity to undertake an independent programme of research under the supervision of a member of staff. It provides students with the opportunity to demonstrate original and critical thoughts as well as build practical and project-management skills.

Students may select a project from a series of proposals provided by staff, conduct a review of the literature, identify a hypothesis, and design a programme of research to test the hypothesis (under guidance from their supervisor). Students will be expected to manage the project including obtaining relevant ethical approval and conducting COSHH and risk assessments.

Students may analyse and interpret data which will be collected in the laboratory or the field, or using computational sources (e.g. software for mathematical modelling; the internet for the meta-analysis of pre-collected data).

The project will be written up either as a thesis or a scientific paper following closely defined criteria.

Level 4

Academic Research Project (Option)

This module provides students with the opportunity to apply chemical knowledge and laboratory skills to an extended practical research study. It also provides the opportunity to further develop professional skills, including the use of online literature/chemical data searching; ability to critically review relevant published literature & written/oral presentation of research activities.

Advanced Topics in Chemistry (Core)

This module aims to provide students skills to critically analyse and adopt topical areas of research and advance instrumentation in the field of chemistry. This information will be utilised to provide students with an understanding and appreciation of how fundamental chemistry theory and experimentation are being applied to contemporary cutting edge science. The module will draw inspiration from both ‘grand challenges for chemical sciences’ and will reflect the current research focus within the chemistry school.

The module comprises a series of lectures, workshops and experimentation and the content within each topic and instrumental techniques, will aim to build on students' knowledge of basic physical, organic and inorganic chemistry and will deliver in-depth analysis of its application in the main-stream chemical, biological and environmental processes. Students will also have the opportunity to learn to provide an up-to-date account of modern methods in synthetic organic chemistry, material & inorganic chemistry and application of physical chemistry theory in experimentation, as well as cover key advanced instrumentation techniques in chemistry and provide hands-on experience.

Commercial Research Project (Option)

This module provides students with the opportunity to apply chemical knowledge and laboratory skills to an extended practical research study within a commercial context. Students can further develop professional skills, incl. use of online literature/chemical data searching; ability to critically review relevant published literature and written/oral presentation of research activities.

Professional and Personal Development (Core)

This module aims to develop systematic personal and professional development of a student in a specialist area of chemistry to enhance employability. This is achieved through development and execution of a personal learning plan designed using a process of self-reflection around five development themes: personal development; professional skills development; technical skills development; research interests; career development.

†The availability of optional modules may vary from year to year and will be subject to minimum student numbers being achieved. This means that the availability of specific optional modules cannot be guaranteed. Optional module selection may also be affected by staff availability.

Special Features

The philosophy of the School of Chemistry is to combine fundamental research with a strong focus on industry relevance, working with companies to address real needs. From your first week, our programmes provide a hands-on approach, which we call ‘Student as Producer’. This initiative, at the centre of our teaching and learning, provides students with the chance to develop the professional skills required for their future career. The theoretical basis of chemistry is twinned with practical laboratory experience, whilst we also look to develop key industry skills including communications, problem solving and project management.

Our academic community provides a supportive and nurturing teaching environment. There is close interdepartmental collaboration with scientists in the other Schools within the College of Science, including Life Sciences, Pharmacy and Engineering. As a student here, you will have the opportunity to engage in real research and professional problem solving. Our research informs our teaching right from the start of your programme to enhance your learning experience.

The School of Chemistry is home to research teams who are making groundbreaking discoveries across the fields of science. A testing method devised by a research team in the School is leading the way in how substances in ‘legal highs’ are identified.

Professional Practice modules throughout your course are geared to help you develop skills for applying your chemistry in areas such as pharmaceutical development, environmental science, petrochemicals and energy, analytical and quality control.

Placements

We use an innovative ‘end-on’ full-year placement programme for all students at Stage 4 of the MChem. You can choose to focus on research through a placement in a research group at the University or another institution, or complete a full-year placement (usually salaried £15-20k). Salaried placements are competitive and students will be expected to undertake an application process for such positions.

There are also opportunities for overseas placements with European, American and Australian institutions through our International Intern Programme which takes place between Stages 3 and 4.

Placement Year

When students are on an optional placement in the UK or overseas or studying abroad, they will be required to cover their own transport and accommodation and meals costs. Placements can range from a few weeks to a full year if students choose to undertake an optional sandwich year in industry.

Students are encouraged to obtain placements in industry independently. Tutors may provide support and advice to students who require it during this process.

Student as Producer

Student as Producer is a model of teaching and learning that encourages academics and undergraduate students to collaborate on research activities. It is a programme committed to learning through doing.

The Student as Producer initiative was commended by the QAA in our 2012 review and is one of the teaching and learning features that makes the Lincoln experience unique.

Facilities

Students have access to the University’s purpose-built Joseph Banks Laboratories and Science Building, which offer specialist laboratory and teaching spaces. High-specification equipment is available for NMR, mass spectrometry, chromatography, electron microscopy and X-ray diffraction.

At Lincoln, we constantly invest in our campus as we aim to provide the best learning environment for our undergraduates. Whatever the area of study, the University strives to ensure students have access to specialist equipment and resources, to develop the skills, which they may need in their future career.

View our campus pages [www.lincoln.ac.uk/home/campuslife/ourcampus/] to learn more about our teaching and learning facilities.

Career Opportunities

Chemistry graduates may pursue a wide range of science-related careers in sectors including energy, petrochemicals, pharmaceuticals, and consumer and personal care products.

This course aims to equip graduates with extensive analytical and mathematical skills which are relevant to roles in finance, management, science-based marketing and journalism, education and academic research. Some graduates may choose to continue their studies at doctoral level.

Careers Service

The University Careers and Employability Team offer qualified advisors who can work with students to provide tailored, individual support and careers advice during their time at the University. As a member of our alumni we also offer one-to-one support in the first year after completing a course, including access to events, vacancy information and website resources; with access to online vacancies and virtual resources for the following two years.

This service can include one-to-one coaching, CV advice and interview preparation to help you maximise our graduates future opportunities.

The service works closely with local, national and international employers, acting as a gateway to the business world.

Visit our Careers Service pages for further information. [http://www.lincoln.ac.uk/home/campuslife/studentsupport/careersservice/]

Additional Costs

For each course students may find that there are additional costs. These may be with regard to the specific clothing, materials or equipment required, depending on their subject area. Some courses provide opportunities for students to undertake field work or field trips. Where these are compulsory, the cost for the travel, accommodation and meals may be covered by the University and so is included in the fee. Where these are optional students will normally (unless stated otherwise) be required to pay their own transportation, accommodation and meal costs.

With regards to text books, the University provides students who enrol with a comprehensive reading list and our extensive library holds either material or virtual versions of the core texts that students are required to read. However, students may prefer to purchase some of these for themselves and will therefore be responsible for this cost. Where there may be exceptions to this general rule, information will be displayed in a section titled Other Costs below.

Related Courses

Our BSc (Hons) Biochemistry degree takes a research-centred approach to teaching and learning, providing the opportunity to work closely with academics on collaborative research projects.
Our MBio Biochemistry degree takes a research-centred approach to teaching and learning, providing the opportunity to work closely with academics on collaborative research projects.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Forensic chemistry is the application of scientific knowledge and investigation to law enforcement. From identifying substances to analysing crime scenes, the skills of a forensic chemist often play a vital role in criminal investigations.
Forensic chemistry is the application of scientific knowledge and investigation to law enforcement. From identifying substances to analysing crime scenes, the skills of a forensic chemist often play a vital role in criminal investigations.
Our aim at Lincoln is to produce passionate pharmaceutical scientists who are adept in addressing the healthcare challenges of the future and are well prepared for careers in the pharmaceutical and biotechnology industries.
The MPharm course at Lincoln combines the science of medicines and disease with the development of patient-facing decision-making skills and professional practice required by modern pharmacists to care for patients.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The programme aims to develop the analytical and practical skills required to prepare students for a wide range of science-related careers.
Chemistry plays a key role in tackling global challenges such as energy production, health and wellbeing, food security and the use of natural resources. The analytical and practical skills that can be developed on this course will aim to prepare students for a wide range of science-related careers.

Tuition Fees

2017/18 EntryUK/EUInternational
Full-time £9,250 per level £14,500 per level
Part-time £77.00 per credit point  N/A
Placement (optional) Exempt Exempt

 

2018/19 EntryUK/EUInternational
Full-time £9,250 per level £15,600 per level
Part-time £77.00 per credit point  N/A
Placement (optional) Exempt Exempt


The University undergraduate tuition fee may increase year on year in line with government policy. This will enable us to continue to provide the best possible educational facilities and student experience.

In 2017/18, fees for all new and continuing undergraduate UK and EU students will be £9,250.

In 2018/19, fees may increase in line with Government Policy. We will update this information when fees for 2018/19 are finalised.

Please note that not all courses are available as a part-time option.

For more information and for details about funding your study, please see our UK/EU Fees & Funding pages or our International funding and scholarship pages. [www.lincoln.ac.uk/home/studyatlincoln/undergraduatecourses/feesandfunding/] [www.lincoln.ac.uk/home/international/feesandfunding/]

The University intends to provide its courses as outlined in these pages, although the University may make changes in accordance with the Student Admissions Terms and Conditions [www.lincoln.ac.uk/StudentAdmissionsTermsandConditions].